• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CNIO team finds how melanoma ‘deceives’ the immune system, increasing resistance to immunotherapy

Bioengineer by Bioengineer
October 19, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: A. Garrido, CNIO

The sophisticated human immune system has evolved to become an effective protection system against a great number of diseases, cancer being one of them. The immune system recognises and destroys cancer cells using a monitoring process called immunological surveillance. However, like Dr Jekyll and his alter ego Mr Hyde, the immune system sometimes takes on an alternate personality and favours tumour development instead of destroying cancerous cells. This dual behaviour makes it difficult to detect prognosis indicators and targets for drug development. In fact, one of the big challenges in oncology is the development of better, more effective immunotherapy.

A research team headed by Marisol Soengas, Head of the Melanoma Group at the Spanish National Cancer Research Centre (CNIO), has taken an important step forward, discovering what melanoma cells do to remain undetected by the immune system, which does not attack them and even transforms into an ally. The study, published in Nature Medicine, may have interesting clinical implications and its findings can be applied to other cancer types.

An inside ally for melanoma

In 2017, the researchers in the Melanoma Group at the CNIO found that the MIDKINE protein plays an essential role in melanoma metastasis, so much so that its activation determines the tumour’s potential to metastasise. Actually, melanoma has a very high potential to metastasise early. The CNIO researchers analysed the expression of MIDKINE in a novel animal model and found that higher expression of this protein is related to higher metastasis potential, while blocking MIDKINE inhibits the spread of cancerous cells. Recently, the researchers have taken an important step forward, discovering a new role of the protein in the immune system, which instead of attacking melanoma cells boosts inflammation and promotes melanoma growth.

“Our results help us understand why metastatic melanoma is associated with a poor prognosis and, especially, why some patients do not respond to immunotherapy,” says Marisol Soengas. “We examined databases from six separate studies and found a group of genes associated with MIDKINE expression in patients who do not respond or develop resistance to immunotherapy.”

Dual therapeutic strategy

The observations were tested in animal models: “When we blocked MIDKINE, two important types of immune cells (macrophages and T lymphocytes) began working normally again and attacked the tumour,” says Soengas. “This means that, in treating patients with melanoma, we should take a dual therapeutic approach”. Taking the brakes off an immune response, that is, using immune checkpoint inhibitors, is not enough. “MIDKINE should be inhibited as well, so that the defence system can regain its normal functions”.

“We also studied other tumours, like glioma, lung cancer and kidney cancer,” David Olmeda, co-author of the study, says. “We believe our findings will have a considerable impact in a number of diseases,” he adds.

In the last years, researchers and clinicians have made remarkable efforts to enhance immune cells’ cancer-fighting capabilities. However, even though in some cases immunotherapies are highly successful, this approach needs to be further developed. For example, it has proven ineffective in treating pancreatic cancer, while in the case of melanoma, around 60% of patients respond to treatment.

These differences in tumour response to immunotherapy led to the classification of tumours as hot or cold. Some “hot tumours do not fully respond to treatment, a fact we could not understand before,” says Daniela Cerezo, first author of the study. “Our results contribute to explain the reasons why this is so, and they will help increase the effectiveness of immunotherapy for these tumours.”

###

The research was funded by the Ministry of Science and Innovation, the Carlos III Health Institute, the Ministry of Health, the Melanoma Research Alliance, Worldwide Cancer Research, the Spanish Association Against Cancer (AECC), BBVA Foundation’s Leonardo Grant for scientific researchers and cultural creators, “la Caixa” Foundation, and H2020-MSCA-Immutrain.

Animated video: https://youtu.be/x5TnzG7T10E

Reference paper: MIDKINE rewires the melanoma microenvironment towards a tolerogenic and immune resistant state. Daniela Cerezo-Wallis et al (Nature Medicine, 2020). DOI: 10.1038/s41591-020-1073-3

Media Contact
Vanessa Pombo
[email protected]

Original Source

https://www.cnio.es/en/news/publications/melanoma-deceives-immune-system-increasing-resistance-to-immunotherapy/

Related Journal Article

http://dx.doi.org/10.1038/s41591-020-1073-3

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologycancerDermatologyGenesGeneticsImmunology/Allergies/AsthmaMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Dimethyl Fumarate Boosts Antitumor Immunity in Cervical Cancer

October 20, 2025
blank

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025

Soil Amendments Boost Wheat Yields in Namibia

October 20, 2025

Impact of Federal Policies on Hospice Antipsychotic Use

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1267 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dimethyl Fumarate Boosts Antitumor Immunity in Cervical Cancer

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

Soil Amendments Boost Wheat Yields in Namibia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.