• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Climate model biases in global monsoon: Insights from interhemispheric energy transport

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
Global monsoon simulation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Global monsoon is a critical component of the global atmospheric circulation system. Variations in summer precipitation over the global monsoon region have large impacts on freshwater resources, which support about two-thirds of the world’s population. Understanding the global monsoon variability and predicting its future changes are of great importance, which relies heavily on climate models. However, the current generation of climate models often exhibit pronounced biases in global monsoon simulations. Notably, the dry and wet biases found in the Northern and Southern Hemisphere monsoon regions in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and 5 (CMIP5) persist in CMIP6 models, but the reasons for these biases remain unclear.

Global monsoon is a critical component of the global atmospheric circulation system. Variations in summer precipitation over the global monsoon region have large impacts on freshwater resources, which support about two-thirds of the world’s population. Understanding the global monsoon variability and predicting its future changes are of great importance, which relies heavily on climate models. However, the current generation of climate models often exhibit pronounced biases in global monsoon simulations. Notably, the dry and wet biases found in the Northern and Southern Hemisphere monsoon regions in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and 5 (CMIP5) persist in CMIP6 models, but the reasons for these biases remain unclear.

Research teams from the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and the Pacific Northwest National Laboratory in the U.S.A. are attempting to develop a diagnostic framework to identify the sources of the global monsoon simulation biases from an energy transport perspective. This framework focuses on the observed processes of interhemispheric energy transport that is closely linked to the summer precipitation in both the Northern Hemisphere and Southern Hemisphere monsoon regions. During the boreal summer, a pronounced interhemispheric thermal contrast promotes stronger southward and northward moist static energy transport in the upper and lower levels, respectively, leading to more vigorous monsoon circulation and increased precipitation in the Northern Hemisphere. Conversely, during the austral summer, similar processes enhance monsoon activity in the Southern Hemisphere. Interhemispheric energy transport is primarily driven by interhemispheric differences in net energy flux into the atmosphere, associated with downward longwave radiative flux from the top of the atmosphere and upward longwave radiative flux from the surface.

“By evaluating the skill of CMIP5 and CMIP6 climate models  under the interhemispheric energy transport diagnostic framework, we have revealed an improvement in CMIP6 compared to CMIP5, which is attributed to reduced dry biases in Northern Hemisphere monsoon simulations”, said Dr. CHEN Ziming, the first author of the study, “These improvements are linked to smaller negative biases in downward surface longwave radiation and northward energy transport in CMIP6 compared to CMIP5”.

“By demonstrating the connections between model biases in the monsoon and energy transport, we highlight that accurately reproducing the meridional global atmospheric energy transportation is necessary for skillful global monsoon simulation. This finding is hoped to provide a useful reference for climate model developers in the improvement and development of next generation climate models”, said Prof. ZHOU Tianjun, the corresponding author of the study.

The study is published in Journal of Climate.



Journal

Journal of Climate

DOI

10.1175/JCLI-D-23-0444.1

Article Title

Understanding the biases in global monsoon simulations from the perspective of atmospheric energy transport

Article Publication Date

8-Jun-2024

Tags: Atmospheric energy transportClimate model biasesCMIP simulationsGlobal monsoonInterhemispheric energy transport
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Colorimetric Clues Reveal Hidden Catalysis Secrets

September 17, 2025
blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Pennsylvania Professor Awarded 2025 Clinical Research Prize

Scaling Up End-to-End On-Chip Photonic Neural Networks

Mapping Synaptic Connections with Two-Photon Holographic Optogenetics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.