• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Civil engineering Professor Sharon Di wins NSF CAREER Award

Bioengineer by Bioengineer
April 30, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using optimization, game theory, and data analytics, Di will model a framework to improve transportation ecosystems of the future

IMAGE

Credit: Jeffrey Schifman/Columbia Engineering

Sharon Di, assistant professor of civil engineering and engineering mechanics, has won a National Science Foundation CAREER Award for her work in the nascent field of autonomous vehicles and shared mobility transportation, areas rapidly being transformed by emerging communications and sensing technologies. The five-year $584,137 grant will support her project, “Multi-scale Multi-population Mean Field Game-Theoretic Framework for the Autonomous Mobility Ecosystem.”

Di balances theory and application to develop new theories and models in transportation engineering that will help transportation planners and managers maximize efficiency and sustainability. A committee member of the Data Science Institute’s Center for Smart Cities, Di applies optimization, game theory, and AI to large data sets collected from various types of traffic sensors, including individual tracing devices such as GPS. Her travel behavior research is focused on a broad range of factors from congestion pricing to ride-hailing services like Uber as well as the future role of connected and automated vehicles (AVs).

“I am very happy and proud to receive such an honor,” says Di. “With this NSF award, I will leverage my expertise in travel behavioral modeling and network optimization to develop a new framework that brings together the fields of game theory, dynamic control, data science, and transportation engineering. I hope to help reshape technological innovation for social good and encourage the next-generation of students into becoming civic-minded technologists.”

The goal of Di’s project is to advance fundamental understanding of the equilibria of the future transportation ecosystem and its controls–planning and policy–needed to guide the ecosystem toward a social optimum. Current human-driven vehicles, new autonomous vehicles (AVs), AV manufacturers, and transportation network companies (TNCs or rideshare organizations) will constantly interact with one another, often with competing and selfish goals, pushing the system in directions that existing models may fail to predict.

“These competing goals could lead to undesirable policies that jeopardize social welfare,” says Di. “There is a pressing need for a paradigm shift in our fundamental understanding of mixed traffic now made up of AVs and human-driven vehicles. Our transportation systems community urgently needs a novel modeling and simulation platform to project future mixed-traffic dynamics and assist in socially optimal policy-making.”

Working closely with an advisory committee of leaders from Columbia’s Data Science Institute, the NYC Department of Transportation and Didi Chuxing, a Chinese AI and autonomous technology-based TNC, Di plans to develop a game-theoretic model where each AV selects its best strategies in car-following, lane-changing, and routing behavior: this will help her to further investigate AV manufacturers’ role in influencing future traffic via design of autonomous driving algorithms. She is also studying the impact of TNC drivers’ passenger-seeking behavior on traffic congestion as well as promoting partnerships among academia, DOTs, and the AV industry to design socially optimal policies for infrastructure planning and the regulation of technology.

Real-time traffic experiments are, of course, not just costly but highly risky to perform. So Di is developing a scalable, innovative game-theoretic tool originating from dynamic control and economics–mean field game (MFG)–to dynamically model a complex system composed of a very large number of interacting agents who individually have a very small impact on the outcome. Mean field approximation allows for the translation of agents’ microscopic behaviors and interactions at a macroscopic level. Most importantly, MFG embodies classical traffic flow models with behavioral interpretation, thereby providing a flexible behavioral foundation to accommodate the new traffic entities like AVs and TNCs.

Once her tool is built, she will test it out on Columbia’s COSMOS testbed, a living lab for advanced 5G and wireless research in West Harlem. “If we’re going to game the traffic, we need to be able to empower artificial intelligence for AVs,” she explains. “Instead of hypothesizing explicitly how AVs drive, we need to design future AVs to act as rational, utility-optimizing agents that play best strategies at each level of choice by solving optimal control problems.”

Di will also use her tool to consider the interdependency between transportation and other systems of smart cities, adding: “This project will help New York City planners and regulators better understand the potential consequences of AV and related technologies on traffic safety and efficiency, and will, in turn, help prepare them for the transition to future smart cities.”

###

Media Contact
Holly Evarts
[email protected]

Original Source

https://engineering.columbia.edu/news/sharon-di-nsf-career-award

Tags: Algorithms/ModelsCivil EngineeringTechnology/Engineering/Computer ScienceTransportation/Travel
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling

April 10, 2021
IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

Better metric for thermoelectric materials means better design strategies

April 10, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In