• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Circulating tumor DNA gives treatment options for the most common ovarian cancer type

Bioengineer by Bioengineer
May 6, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of ovarian cancer. The HGSOC tumors consist of several heterogeneous cell populations with a large number of mutations. This genetic variability makes it difficult to find drugs that would kill all the cancer cells, and to which the cells would not become resistant during treatment.

Over half of the patients diagnosed with high-grade serous ovarian cancer die within five years of diagnosis, that is, annually more than 150 000 women globally. To improve the efficacy of HGSOC treatment, a research group from University of Helsinki, together with researchers from University of Turku and Turku University Hospital, have now studied the use of circulating tumor DNA in finding precision medicine-based treatments for the disease.

Circulating tumor DNA refers to tumor-derived cell-free DNA in the bloodstream. Circulating tumor DNA detection is a minimally invasive technique that offers dynamic “molecular snapshots” of genomic alterations in cancer.

“Analyzing circulating tumor DNA enables us to detect genomic alterations also in late stage cancers in which taking biopsies from the tumor is difficult or even impossible. In the current research, we demonstrated that circulating tumor DNA can be used to monitor the patient responses to treatment, and find drug combinations to target the Achilles’ heels of the tumor’s genomic profile,” says Professor Sampsa Hautaniemi, director of the Systems Oncology Research Program in the Faculty of Medicine at University of Helsinki.

The results were published in JCO Precision Oncology.

Hautaniemi’s research group has implemented a clinical circulating tumor DNA workflow to detect clinically actionable alterations in more than 500 cancer-related genes.

In the present study, the researchers analyzed 78 circulating tumor DNA samples from 12 ovarian cancer patients before, during and after the treatment using bioinformatics analysis, and in-house Translational Oncology Knowledgebase to detect clinically actionable genomic alterations.

DNA alterations associated with clinically available drugs were detected in 58% of the patients. The treatment of one patient has already been tailored successfully based on the results. For the other patients the results may be useful if their cancer relapses.

The results demonstrate a proof-of-concept for using circulating tumor DNA to guide clinical decisions. Furthermore, the results show that longitudinal circulating tumor DNA samples can be used to identify poor-responding patients after first cycles of chemotherapy.

In addition, the researchers provide the first comprehensive, open-source circulating tumor DNA workflow for detecting clinically actionable alterations in solid cancers.

“The prognosis of ovarian cancer patients is still poor. However, the future looks brighter as research has discovered targeted therapies for the genomic alterations also in ovarian cancer tumors. We are currently in the forefront of the precision medicine for ovarian cancer. Our goal is to find out how ovarian cancer becomes resistant to current treatments, and use this knowledge in finding more effective precision treatments,” Hautaniemi says.

###

Media Contact
Sampsa Hautaniemi
[email protected]

Related Journal Article

https://www.helsinki.fi/en/news/health-news/circulating-tumor-dna-gives-treatment-options-for-the-most-common-ovarian-cancer
http://dx.doi.org/10.1200/PO.18.00343

Tags: cancerDiagnosticsGynecologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

New Alliance Launches Clinical Trials of Targeted Therapies for Rare Adrenal Cancers

October 23, 2025

Illuminating Life: Rice Scientists Create Glowing Sensors to Monitor Cellular Changes in Real Time

October 23, 2025

Study Reveals Hidden Immune Defense Mechanism That Could Combat Cancer

October 23, 2025

Mayo Clinic Partners in Groundbreaking Study Demonstrating Enhanced Survival Rates for Early Breast Cancer Patients

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.