• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, June 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

A Circuit for Change

Bioengineer by Bioengineer
February 20, 2014
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To answer the seemingly simple question “Have I been here before?” we must use our memories of previous experiences to determine if our current location is familiar or novel.

A Circuit for Change

In a new study published in the Journal of Neuroscience researchers from the RIKEN Brain Science Institute have identified a region of the hippocampus, called CA2, which is sensitive to even small changes in a familiar context. The results provide the first clue to the contributions of CA2 to memory and may help shed light on why this area is often found to be abnormal in the schizophrenic brain.

Change comes in many flavours; if we move to a new country, city or house it is easy to recognize the novelty of the environment, but if we come home to find the furniture rearranged or a new piece of art on the wall, this recognition may be much slower. Scientists believe this is because memory formation requires comparing current information with previous experience and the larger the overlap, the more difficult the distinction. It has long been known that the hippocampus is a region of the brain crucial for this type of memory, however the identification of neurons responsible for this comparison has remained elusive.

In this study Marie Wintzer, Roman Boehringer, Denis Polygalov and Thomas McHugh used genetically modified mice and advanced cell imaging techniques to demonstrate that while the entire hippocampus is capable of detecting large changes in context, the small and often overlooked CA2 region is exquisitely sensitive to small changes.

Mice were familiarized with one context and then placed either in a much different context or back in the original with small alterations, such as several new small objects. By detecting the expression of activity induced genes Wintzer and colleagues were able to demonstrate that just a few new objects in the otherwise unchanged context completely altered the pattern of active cells specifically in CA2. Mice that had been genetically engineered to lack this CA2 response explored the new context much less than their normal siblings.

“CA2 has often been overlooked or simply grouped together with its more prominent neighbors, but these data suggest it’s unique and important for recognizing and reacting to changes in our environments” explains Dr. McHugh, the leader of the study.

Compared to rodents, human CA2 is proportionally larger, but still as mysterious. One intriguing finding has been that early in the onset of schizophrenia and bipolar disorder there is a loss of inhibitory neurons specifically in CA2. In addition to the memory problems that accompany these diseases, patients often exhibit a hyper-sensitivity to changes in environment and routine. This study suggests there may be a functional relationship between this sensitivity and CA2 dysfunction, hinting at a new circuit to target in our attempts to understand the function of both the normal and diseased brain.

Story Source:

The above story is based on materials provided by RIKEN Brain Science Institute, Juliette Savin.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

Startups to unveil cutting-edge point-of-care technologies at Boston medtech event

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In