• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Chronoprints’ identify samples by how they change over space and time

Bioengineer by Bioengineer
March 20, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: American Chemical Society

Modern analytical tools like mass spectrometers can identify many unknown substances, allowing scientists to easily tell whether foods or medicines have been altered. However, the cost, size, power consumption and complexity of these instruments often prevent their use in resource-limited regions. Now, in ACS Central Science, researchers report that they have developed a simple, inexpensive method to identify samples by seeing how they react to a change in their environment.

According to the World Health Organization, roughly 10 percent of all medicines in low- and middle-income countries are substandard or counterfeit. As with counterfeit medications, fraudulent foods can also place consumers at risk of illness or death, in addition to costing the industry billions of dollars per year. William Grover and colleagues at the University of California, Riverside wondered whether they could develop a simple, less expensive and reliable test to compare unknown samples with authentic foods and medicines. The researchers based their test on “chronoprints,” a term they use to describe images that capture how a sample changes over space and time in response to a perturbation — in this case, a sudden temperature change.

The researchers loaded several liquid samples into long parallel channels on a microfluidic chip. Then, they immersed one end of the chip in liquid nitrogen, which created a temperature gradient that caused the samples to freeze, thaw, separate into components or otherwise change with time and distance away from the liquid nitrogen. With a USB camera, they captured videos of how the samples changed, converted these videos to images and compared the images using computer programs. The researchers found that identical samples, such as the same brand of cold medicine or extra-virgin olive oil, had very similar chronoprints, whereas adulterated medicine or olive oil did not. In principle, the method, which is much less expensive than current approaches, could also be used to analyze gases or dissolved solid samples, the researchers say.

###

The authors acknowledge funding from the National Science Foundation.

The paper’s abstract will be available on March 20 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00860

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: BiotechnologyChemistry/Physics/Materials SciencesDeveloping CountriesFood/Food ScienceMedicine/HealthNutrition/NutrientsScience/Health and the LawScience/Health/Law
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.