• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chitin-binding proteins override host plant’s resistance to fungal infection

Bioengineer by Bioengineer
November 13, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Helena Volk, Kristina Marton, Marko Flajšman, et al.


An insoluble complex carbohydrate, chitin makes up fungal walls and plays a significant role in the interaction between fungal pathogens and their plant hosts. Plant cells harbor immune receptors that perceive chitin and work to stop fungal infection. However, fungal plant pathogens then release chitin-binding proteins that perturb the chitin-triggered immunity.

A recent Molecular Plant-Microbe Interactions article studies one of these chitin-binding proteins from a soilborne fungus (Verticillium nonalfalfae) that causes vascular wilt in plants. This fungus binds a particular protein (VnaChtBP) to chitin in order to abolish the host plant’s chitin-triggered burst of reactive oxygen species and shield the fungus from being digested by the plant.

The scientists used 3D homology modelling, molecular docking, CD measurements, and a Y2H assay to determine, for the first time, the probable molecular mechanism of chitin-binding to carbohydrate-binding module family 18 (CBM18)-containing fungal effectors. In addition, this research highlights that, apart from the well-studied Avr4 (CBM14) and LysM (CBM50) fungal effectors, which can interfere with plant chitin perception and activation of immune responses, other structurally unrelated fungal effectors with CBM18 domains have evolved with similar function, suggesting a convergent evolution.

Learn more by reading “Chitin-Binding Protein of Verticillium nonalfalfae Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity,” which describes the characterization of this protein and determines the probable molecular mechanism of CBM18 chitin-binding fungal effectors.

###

Molecular Plant-Microbe Interactions (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.

Follow us on Twitter @MPMIjournal and visit https://apsjournals.apsnet.org/journal/mpmi to learn more.

Media Contact
Ashley Bergman Carlin
[email protected]
651-994-3832

Related Journal Article

http://dx.doi.org/10.1094/MPMI-03-19-0079-R

Tags: Agricultural Production/EconomicsBioinformaticsBiologyBiotechnologyCell BiologyGeology/SoilMolecular BiologyMycologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025
Drivers of Human-Gaur Conflict in Tamil Nadu

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

September 11, 2025

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insurance Disparities Affect Anorexia Nervosa Care Quality

Ochsner Recognized as a Top Health Care Workplace by Fortune

New Study Uncovers Hidden Risks Following Cervical Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.