• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chinese-UK project reveals ancient secrets of medicinal mint

Bioengineer by Bioengineer
April 24, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Botanikfoto, Royalty Free Image

The precious chemistry of a plant used for 2000 years in traditional Chinese medicine has been unlocked in a project that raises the prospect of rapid access to a wide array of therapeutic drugs.

Carried out by CEPAMS – a partnership between the Chinese Academy of Sciences and the John Innes Centre – the project has successfully delivered a high-quality reference genome of the mint-family member Scutellaria baicalensis Georgi.

The plant, commonly known as Chinese Skullcap, is well-known in Traditional Chinese Medicine (TCM) and is cultivated worldwide for its therapeutic properties.

Preparations of its dried roots, ‘Huang Qin’, show pharmacological activities conferred by novel compounds called flavonoids, including antibacterial, antiviral, antioxidant, anti-cancer, liver-protective and neuroprotective properties.

Despite the commercial interest and increasing demand for Scutellaria, improvements through breeding have been limited by a lack of genome information.

The team took DNA from a single plant at the Shanghai Chenshan Botanical Garden and used a combination of sequencing strategies to assemble 93% of the genome organised into 9 subsets of information or “pseudo chromosomes.”

The development means that researchers are now able to identify the genes that produce a wealth of valuable compounds, and then turn them into drug candidates using metabolic engineering techniques in the lab.

The sequencing project outlined in the journal Molecular Plant, also provides a reference gateway for genetic exploration of other valuable members of the Lamiaceae or mint family.

“When I started getting the analysis back on the genome sequence it was like a revelation: it showed at a fundamental level how the pathway to valuable compounds evolved.” says Professor Cathie Martin of the John Innes Centre and one of the authors of the study.

“The sequence is so good that it can improve the understanding of all the other genome sequences in the mint family. This is a large family of plants that is hugely important in Traditional Chinese Medicine and flavourings.”

This study highlights the current revival in TCM following the award of the Nobel Prize for Physiology and Medicine in 2015 to Professor You-you Tu for her discovery of artemisinin as a broad spectrum anti-malarial from Artemesia annua (wormwood).

Since then, pharmacology has started examining the healing properties of preparations from plants listed in the traditional texts, such as Shennong Bencaojing (The Divine Farmer’s Materia Medica) written between 200 and 250 AD. Such preparations have recently been reported as effective against a variety of complaints including as complementary cancer treatments.

Work on the reference genome and sequences from members of the same family has already started to deliver valuable information that could be applied to development of a wider range of remedies.

“This particular plant makes the bioactive compounds in the root, which means you have to wait three years for the plant to get big enough and of course in taking the root you destroy the plant,” said Professor Martin.

“We’ve screened some members of the same family that make similar compounds in the leaves which means you could get more sustainable therapeutics taken in a different way,” she added.

###

The full study: The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis is published in Molecular Plant journal.

Media Contact
Adrian Galvin
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.molp.2019.04.002

Tags: BiologyBiotechnologycancerGenesGeneticsHealth CareLiverMedicine/HealthMicrobiologyMolecular Biology
Share13Tweet7Share2ShareShareShare1

Related Posts

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

October 27, 2025

ACHO: Enhancing Treatment Adherence through Digital Care

October 27, 2025

Decline in Opioid Prescriptions for Pain Management Observed in Canada

October 27, 2025

Canada Struggles to Address Growing Youth Opioid Use Crisis

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fluid Strategies in Preterm Infants with PDA

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

ACHO: Enhancing Treatment Adherence through Digital Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.