• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chinese scientists use knowledge from climate system modeling to develop a global prediction system for the COVID-19 pandemic

Bioengineer by Bioengineer
February 5, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chuwei Liu

At the time of writing, coronavirus disease 2019 (COVID-19) is seriously threatening human lives and health throughout the world. Before effective vaccines and specific drugs are developed, non-pharmacological interventions and numerical model predictions are essential. To this end, a group led by Professor Jianping Huang from Lanzhou University, China, developed the Global Prediction System of the COVID-19 Pandemic (GPCP).

Jianping Huang is a Professor in the College of Atmospheric Sciences and a Director of the Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, China. He has for a long time been dedicated to studying long-term climate prediction, dust-cloud interaction, and semi-arid climate change by combining field observations and theoretical research. Lockdown in early 2020 seriously affected his research. Therefore, stuck at home, he held online discussions with his team members on how their experience of developing climate system models might be able to contribute to fighting the pandemic. He didn’t expect much response, but was surprised and touched when many of his colleagues responded enthusiastically.

Therefore, he and his team combined the results of 30 years of work in statistical dynamic numerical weather prediction methods, and developed the GPCP based on the traditional Susceptible-Infected-Recovered (SIR) infectious disease model. The improved methods and results were published in Atmospheric and Ocean Science Letters.

In order to combine epidemiological data and models, the Levenberg-Marquardt (LM) parameter optimization algorithm was proposed to identify epidemiological models, thereby constructing a Statistical-SIR model. The LM algorithm introduces a damping coefficient when calculating the Hessian matrix by the traditional least-squares method, thereby combining the advantage of the Gauss-Newton method and gradient descent method and improving the stability of parameters.

“From the simulation results of four selected countries with relatively high numbers of confirmed cases, the Statistical-Susceptible-Infected-Recovered model using the LM algorithm was found to be more consistent with the actual curve of the epidemic, being better able to reflect its trend of development,” explains Prof. Huang.

In addition, the ensemble empirical mode decomposition (EEMD) model and the autoregressive moving average (ARMA) model were also used in combination to improve the prediction results of the GPCP. The EEMD method has been widely used in the fields of engineering, meteorology, ecology, etc. It can decompose the signal according to its own scale, and is suitable for non-stationary and nonlinear signal processing. The ARMA method can better predict time series.

“We found that the EEMD-ARMA method can be directly used to predict the number of daily new cases in countries with a smaller number of confirmed cases whose development trend cannot be predicted by the infectious disease model. Based on the results, this method is more effective for improving prediction results and making direct predictions,” concludes Prof. Huang.

The GPCP model developed by Jianping Huang’s team can carry out targeted predictions for different countries and regions, and has achieved good prediction results. The team will continue to improve the model in the future to provide more accurate forecasts for different countries and regions.

###

Media Contact
Ms. Zheng Lin
[email protected]

Original Source

http://journal22.magtechjournal.com/Jwk_aosl/EN/news/news117.shtml

Related Journal Article

http://dx.doi.org/10.1016/j.aosl.2020.100024

Tags: Atmospheric ScienceMathematics/StatisticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

How Outdoor, Indoor Noise and Sensitivity Affect Health

October 28, 2025

Enhancing Nurses’ Seizure Management Through Flipped Learning

October 28, 2025

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

October 28, 2025

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Killer Whale Genomes Reveal Long-Term Mutation Purging

Advanced MPC for Sliding Mode Control in Metro LIM

Black Soldier Fly Larvae: Eco-Friendly Waste Recycling Solution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.