• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemotherapy with light; only one injection required

Bioengineer by Bioengineer
January 14, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemotherapy with only one injection, repeated phototherapy, and no side effects. Development of a cancer-targeted single component supramolecular peptide phototherapeutic agent

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Researchers in South Korea have developed a phototherapy technology that can significantly increase efficiency while reducing the pain of chemotherapy and minimizing side effects after treatment. The President of Korea Institute of Science and Technology (KIST), Seok-Jin Yoon announced that a research team led by Dr. Se-hoon Kim at the Theragnosis Research Center (KU-KIST Graduate School of Converging Science and Technology) has developed a cancer-targeted phototherapeutic agent that promises complete elimination of cancer cells without side effects. It involves only one injection and repeated phototherapy. This development was made through joint research with Professor Dong-June Ahn of Korea University and Professor Yoon-Sik Lee of Seoul National University.

Phototherapy technology, a cancer treatment modality that uses light, injects a photosensitizer that destroys cancer cells in response to a laser, which accumulates in only cancerous tissues. Further, it shoots light to selectively destroy the cancer cells. It has far fewer side effects than radiation therapy or general chemotherapy (that inevitably damage the tissues surrounding the cancer cells), allowing repeated treatment.

Whereas the effect of the conventional photosensitizers only lasted for one session, and the photosensitizer had to be administered each time the treatment procedure was repeated. Moreover, the residual photosensitizer after treatment accumulated in the skin or eyes causing side effects due to light; thus, it was recommended to isolate the patient from sunlight and indoor lighting for some time after treatment. Overall, the patients receiving treatment have had to suffer from the pain of the injection and the inconvenience of living in isolation each time. Recently, photosensitizers with phototherapeutic effects that get activated only in cancer tissues have been developed; however, they are still toxic and have to be injected for every repeat treatment.

Dr. Se-hoon Kim and his team at KIST used peptides that selectively target cancer tissues and assemble themselves in a specific order to resolve the problems associated with the phototherapy technology. The research team developed a peptide-based photosensitizer that activates phototherapeutic effects only in cancer tissues by using the internalizing RGD peptide (iRGD) that can selectively penetrate and target cancer tissues as the skeleton, and by properly designing a matting agent for the modulation of its reaction to light.

When this newly developed photosensitizer is injected into a living body, it is activated by the body temperature and aggregates into a supramolecular array designed by the research team, to be stored around cancer cells. The subsequent phototherapy can destroy only cancer cells without affecting normal cells.

The phototherapeutic agent developed by the researchers was injected into a mouse model implanted with a tumor, and the photosensitizer was stored around the tumor and was continuously released for a long time (2 to 4 weeks), demonstrating the ability of selectively targeting the tumor with just one injection around the cancerous tissues. Moreover, no toxicity was found to destroy the tissues and major organs around the cancer, even with repeated exposure to light. The cancerous tissues were completely removed through repeated procedures.

“We developed a cancer-targeting peptide phototherapeutic agent that forms a reservoir through supramolecular self-assembly without additional adjuvants when injected in vivo,” said KIST Center Director Se-hoon Kim. “The developed phototherapeutic agent is expected to be useful in future phototherapy as it allows long-term repeated phototherapy without toxicity after only one injection around the cancer until the complete removal of the cancer, and has a simple formulation with a single component,” he added.

###

This study was carried out with a grant from the Ministry of Science and ICT (MSIT), as part of the Institutional R&D Program of KIST. The results of this study were published in the latest issue of “ACS Nano” (IF: 14.588, the top 5.25% in JCR), an international journal in the field of nanotechnology.

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c06881

Tags: BiologyMedicine/HealthTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.