• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemotherapy with light; only one injection required

Bioengineer by Bioengineer
January 14, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemotherapy with only one injection, repeated phototherapy, and no side effects. Development of a cancer-targeted single component supramolecular peptide phototherapeutic agent

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Researchers in South Korea have developed a phototherapy technology that can significantly increase efficiency while reducing the pain of chemotherapy and minimizing side effects after treatment. The President of Korea Institute of Science and Technology (KIST), Seok-Jin Yoon announced that a research team led by Dr. Se-hoon Kim at the Theragnosis Research Center (KU-KIST Graduate School of Converging Science and Technology) has developed a cancer-targeted phototherapeutic agent that promises complete elimination of cancer cells without side effects. It involves only one injection and repeated phototherapy. This development was made through joint research with Professor Dong-June Ahn of Korea University and Professor Yoon-Sik Lee of Seoul National University.

Phototherapy technology, a cancer treatment modality that uses light, injects a photosensitizer that destroys cancer cells in response to a laser, which accumulates in only cancerous tissues. Further, it shoots light to selectively destroy the cancer cells. It has far fewer side effects than radiation therapy or general chemotherapy (that inevitably damage the tissues surrounding the cancer cells), allowing repeated treatment.

Whereas the effect of the conventional photosensitizers only lasted for one session, and the photosensitizer had to be administered each time the treatment procedure was repeated. Moreover, the residual photosensitizer after treatment accumulated in the skin or eyes causing side effects due to light; thus, it was recommended to isolate the patient from sunlight and indoor lighting for some time after treatment. Overall, the patients receiving treatment have had to suffer from the pain of the injection and the inconvenience of living in isolation each time. Recently, photosensitizers with phototherapeutic effects that get activated only in cancer tissues have been developed; however, they are still toxic and have to be injected for every repeat treatment.

Dr. Se-hoon Kim and his team at KIST used peptides that selectively target cancer tissues and assemble themselves in a specific order to resolve the problems associated with the phototherapy technology. The research team developed a peptide-based photosensitizer that activates phototherapeutic effects only in cancer tissues by using the internalizing RGD peptide (iRGD) that can selectively penetrate and target cancer tissues as the skeleton, and by properly designing a matting agent for the modulation of its reaction to light.

When this newly developed photosensitizer is injected into a living body, it is activated by the body temperature and aggregates into a supramolecular array designed by the research team, to be stored around cancer cells. The subsequent phototherapy can destroy only cancer cells without affecting normal cells.

The phototherapeutic agent developed by the researchers was injected into a mouse model implanted with a tumor, and the photosensitizer was stored around the tumor and was continuously released for a long time (2 to 4 weeks), demonstrating the ability of selectively targeting the tumor with just one injection around the cancerous tissues. Moreover, no toxicity was found to destroy the tissues and major organs around the cancer, even with repeated exposure to light. The cancerous tissues were completely removed through repeated procedures.

“We developed a cancer-targeting peptide phototherapeutic agent that forms a reservoir through supramolecular self-assembly without additional adjuvants when injected in vivo,” said KIST Center Director Se-hoon Kim. “The developed phototherapeutic agent is expected to be useful in future phototherapy as it allows long-term repeated phototherapy without toxicity after only one injection around the cancer until the complete removal of the cancer, and has a simple formulation with a single component,” he added.

###

This study was carried out with a grant from the Ministry of Science and ICT (MSIT), as part of the Institutional R&D Program of KIST. The results of this study were published in the latest issue of “ACS Nano” (IF: 14.588, the top 5.25% in JCR), an international journal in the field of nanotechnology.

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c06881

Tags: BiologyMedicine/HealthTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Rare Wasp Species Discovered in the U.S. for the First Time

Rare Wasp Species Discovered in the U.S. for the First Time

August 25, 2025
Refining Variant Analysis in Primate Genomes

Refining Variant Analysis in Primate Genomes

August 25, 2025

The Active Role of Repetitive DNA in the Human Brain Uncovered

August 25, 2025

Durable and Efficient H2 Evolution Achieved with Strongly Coupled Pt–N-Mo Cluster Heterostructure in Anion-Exchange Membrane Electrolyzers

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    144 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kennesaw State Researcher Leverages Engineering Expertise to Uncover Solutions for Stomach Diseases

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Breakthrough AI Tool Uncovers Mechanisms of Drug Action Against Tuberculosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.