• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemists from RUDN University synthesized chitin-based antibiotics

Bioengineer by Bioengineer
December 14, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RUDN University

?hemists from RUDN University discovered previously unknown derivatives of chitin, a biopolymer that forms the exoskeletons of insects and carapaces of crayfish and other arthropods. The new compounds and their nanoparticles have antibacterial properties and are able to catalyze chemical reactions. The results of the study were published in the International Journal of Biological Macromolecules.

Chitin is the second most widely spread biopolymer on Earth. It is used as a basis for many medicinal drugs and surgical materials, such as burn ointments and gels to promote wound healing. However, chitin and its derivatives are still not fully integrated into medicine. They are not soluble in water or most organic solvents, which makes it difficult to obtain new compounds from them. A team from RUDN University suggested a simple and universal method to synthesize water-soluble chitin derivatives.

In their experiment, the chemists used chitin powder from king crab shells. It was treated with a nitrogen-containing substance at room temperature to obtain chitin derivatives with attached azide groups (three nitrogen atoms). At this stage, the team synthesized three derivatives with azide groups attached to 18%, 42%, and 65% or polymer units. At the second stage, more complex derivatives were constructed from different fragments: an azide group, chitin remains, and nicotinic acid ether. Reactions of this kind are usually carried out in an anaerobic atmosphere, but the team decided to simplify the process and to conduct the experiment under normal conditions. The reagents were subject to ultrasound for 15 minutes. As a result, the team obtained 6 new compounds with different azide group composition and various ethers of nicotinic acid.

The new substances contained groups of atoms with a positive charge that could hypothetically interfere with the work of negatively charged elements in bacterial cell walls. The team tested this theory on two microorganisms: S.aureus and E.coli. In the test, the chemists compared the effects of six new polymers and two antibiotics, ampicillin and gentamicin. The efficiency of each substance was assessed by the diameter of the area around it in which the bacteria died. Most chitin derivatives and their nanoparticles showed better results than the antibiotics, with the zone around one of them being 14.9 mm wider than around ampicillin, when tested on S.aureus. In the case of E.coli, one type of nanoparticles had a 17 mm wider zone around it than gentamicin.

“We managed to add previously unknown polymers to the group of water-soluble chitin derivatives. The new substances are non-toxic, show increased antibacterial activity, and can be used as catalysts in organic synthesis. We continue to study the properties of the new compounds. Right now, our group is researching their ability to treat bacterial infections in lab animals,” said Andreii Kritchenkov, PhD, and an assistant researcher at the Department of Inorganic Chemistry, RUDN University.

###

Media Contact
Valeriya Antonova
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ijbiomac.2020.09.123

Tags: BiologyMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

New management approach can help avoid species vulnerability or extinction

January 18, 2021
IMAGE

Eliminating microplastics in wastewater directly at the source

January 18, 2021

Biodistribution of AAV gene transfer vectors in nonhuman primate

January 15, 2021

Basis for the essential cellular powerhouses

January 15, 2021
Next Post
IMAGE

More frequent and extreme marine heatwaves likely to threaten starfish

IMAGE

Toward imperceptible electronics that you cannot see or feel

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    58 shares
    Share 23 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyMaterialsGeneticsPublic HealthCell BiologyInfectious/Emerging DiseasescancerTechnology/Engineering/Computer ScienceMedicine/HealthClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Lasers & molecular tethers create perfectly patterned platforms for tissue engineering
  • Latch, load and release: Elastic motion makes click beetles click, study finds
  • Smart vaccine scheme quick to curb rabies threat in African cities
  • How cells move and don’t get stuck
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In