• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 22, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cheaper and more sustainable sweeteners

Bioengineer by Bioengineer
December 7, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Public Domain

  • Polyalcohols are widely used in the food industry, especially in candy and gum because they bring the sweet without the risk of cavities.
  • Researchers at ICIQ (Tarragona, Spain) and ETH (Zurich, Switzerland) designed a process to obtain sweeteners like mannitol or ribitol from widely available, renewable, cheap products like glucose or arabinose.
  • This new sustainable method prepares polyalcohols from biomass using two consecutive metallic catalysts featuring molybdenum and ruthenium.

Despite not being totally calorie-free sweeteners, polyalcohols are widely used in the food industry. They are particularly common in sweets, gums, and toothpaste for two reasons: they produce a sensation of freshness in our mouth and they don't contribute to tooth decay.

Some of these polyalcohols may be found in nature. However, isolation is uncommon, and industrial synthesis is often preferred. Normally, industries use biochemical processes where enzymes prepare polyalcohols from sugars. But these systems are far from ideal; they require meticulously controlled temperatures, concentrations, and pH, which hinder big-scale production.

Now, scientists at ETH and ICIQ came up with a solution based in heterogeneous catalysis, a common approach in industry -oil cracking, car catalysts, synthesis of ammonia are just some examples. The idea combines a first step where sugar atoms are reorganized thanks to a molybdenum-based catalyst and a second hydrogenation step catalysed by ruthenium. This method allows researchers to obtain valuable polyalcohols like mannitol or ribitol from cheap and widely available products like glucose or arabinose.

The team at ICIQ, led by Prof. Núria López, carried out the computer simulations that helped improve the design of the catalysts. 'Thanks to the powerful resources of the Barcelona Supercomputing Center and the Spanish Supercomputing Network we were able to model catalytic processes with an unprecedented level of precision and complexity,' says López. 'This new approach increases the potential applications of biomass in industry,' she concludes.

###

Media Contact

Fernando Gomollón-Bel
[email protected]
34-977-920-200 x370
@ICIQchem

http://www.iciq.es/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....