• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Change in mosquito mating may control Zika virus

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Genetic cues from male Aedes aegypti mosquitoes passed on during sex affect which genes are turned on or off in a females' reproductive tract post-mating, including genes related to blood feeding, egg development and immune defense, according to new Cornell research.

The researchers believe such processes provide information that could be exploited to fight mosquito-borne diseases, such as dengue fever, chikungunya and Zika virus.

"We have two main goals," said Laura Harrington, professor of entomology and a co-author of a paper published Feb. 22 in the Public Library of Science for Neglected Tropical Diseases. "The first is to understand the basic biology of the mosquito mating system, and the second is to try to understand it in a way that we can develop novel strategies for controlling the mosquito. We are focusing on reproduction because we see it as the Achilles heel of the mosquito."

The research draws from previous findings by molecular biology and genetics professor and study co-author Mariana Wolfner on how Drosophila females' gene expression, behavior and physiology are changed by mating. That work revealed that after mating, seminal fluid proteins passed from males to females led to changes in gene expression in females and led females to increase egg production, reduce feeding and decrease their likelihood to mate again.

In this study, the researchers used sequencing to identify changes in RNA populations in the lower reproductive tract of female mosquitoes in response to mating. RNA is the chemical messenger by which the information in genes is translated into protein.

In the study, the researchers measured changes in the levels of specific RNAs in the female after mating to determine which proteins became more and less abundant. The findings are a step towards understanding what molecules are necessary to prepare a female for producing progeny.

The research team compared RNAs from reproductive tracts from female mosquitoes that had not mated with those that had – immediately after mating, and six and 24 hours afterward.

The results revealed broad changes in the regulation of genes in the female reproductive tract. These affected genes could influence processes related to blood feeding, egg development and immune defense.

The paper provides a foundation for future studies of female mosquito reproduction, according to the researchers. The data are already being used to improve gene information and expression on VectorBase, a National Institute of Allergy and Infectious Diseases resource center for the scientific community.

The researchers hope to uncover a molecule critical for female fertility; scientists could engineer inhibitors of this molecule, that could then be used to block a female's ability to produce fertile eggs or that prevent eggs from traveling through the oviduct.

"We can either genetically engineer males to not induce this specific molecule, or we can create a smart insecticide that binds with the molecule and makes it inaccessible to the female," Harrington said. Such a "smart insecticide" could target mosquitoes without affecting other insects, Wolfner added.

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Melissa Osgood
[email protected]
607-255-2059
@cornell

http://pressoffice.cornell.edu

Share13Tweet7Share2ShareShareShare1

Related Posts

Centella asiatica juice reduces IL-1β inflammation pathways

Centella asiatica juice reduces IL-1β inflammation pathways

November 13, 2025
Xiang Pigs Show Genetic Links to Wrinkled Skin

Xiang Pigs Show Genetic Links to Wrinkled Skin

November 13, 2025

Optimizing Melanin Production from Endophytic Pseudomonas

November 13, 2025

Newly Discovered Predatory “Warrior” Resembled Early Crocodiles and Roamed Before the Dawn of Dinosaurs

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Climate Change Reshapes Global Carbon Sinks

TRIM25 Loss Boosts Cancer Immunotherapy via VISTA

Mapping Deep North Atlantic Amphipods Amid Climate Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.