• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chang’E-5 samples reveal how young volcanism occurred on the Moon

Bioengineer by Bioengineer
October 21, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study led by Prof. CHEN Yi from the Institute of Geology and Geophysics of the Chinese Academy of Sciences (IGGCAS) provides an answer to the question of how young volcanism occurred on the Moon.

Dr. YUAN Jiangyan analyzes Chang’E-5 lunar samples with a scanning electron microscope at IGGCAS

Credit: SU Bin

A new study led by Prof. CHEN Yi from the Institute of Geology and Geophysics of the Chinese Academy of Sciences (IGGCAS) provides an answer to the question of how young volcanism occurred on the Moon.

The researchers found that mantle melting-point depression due to the presence of fusible, easily melted components could generate young lunar volcanism.

Their findings were published in Science Advances on Oct. 21.

Lunar samples returned by the Apollo and Luna missions are all older than about 3 billion years, leading scientists to suppose that the Moon has been geologically dead since then. However, the new lunar samples returned by China’s Chang’E-5 mission in 2020 revealed surprisingly young volcanic activity only 2 billion years old.

For the small rocky Moon, the heat fueling volcanic activity should have been lost long before these eruptions 2 billion years ago.

So what’s going on? Scientists previously speculated that either elevated water content or heat-producing elements in the lunar interior might have driven volcanism in the late stage of the Moon’s life. But the Chang’E-5 data recently published in Nature have ruled out these once-leading hypotheses.

“Recent melting of the lunar mantle can be achieved by either raising the temperature or lowering the melting point. To better understand this problem, we should estimate the temperature and pressure in which the young volcanism was created,” said Prof. CHEN.

The researchers conducted a series of fractional crystallization and lunar mantle melting simulations to compare 27 precious Chang’E-5 basalt clasts with Apollo basalts. They found that the young Chang’E-5-source magma had higher calcium oxide and titanium dioxide contents than older Apollo magmas.

“This is a fascinating result, indicating a significant contribution of late-stage lunar magma ocean cumulates to the Chang’E-5 volcanic formation,” said Dr. SU Bin, first author of the study.

Because the late-stage lunar magma ocean cumulates are calcium-titanium-rich and more easily melted than early cumulates, adding these fusible components to the lunar interior through gravitationally driven mantle overturn could have efficiently reduced the mantle melting temperature and thus triggered the young lunar volcanism.

“We discovered that the Chang’E-5 magma was produced at similar depths but 80 degrees Celsius cooler than older Apollo magmas. That means the lunar mantle experienced a sustained, slow cooling of 80 degrees Celsius from some 3 billion years to 2 billion years ago,” said Dr. SU.

This work presents evidence for the first viable mechanism to account for young volcanism on the Moon that is compatible with the newly returned Chang’E-5 samples. This study can help planetary scientists better understand the Moon’s thermal and magmatic evolution.



Journal

Science Advances

DOI

10.1126/sciadv.abn2103

Article Title

Fusible mantle cumulates trigger young mare volcanism on the cooling Moon

Article Publication Date

21-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Superconductivity Switch

Study: Superconductivity switches on and off in “magic-angle” graphene

January 30, 2023
A schematic figure of compressed AgI.

Chemistry under sheer force

January 30, 2023

Breaking the temperature barrier of hydrothermal carbonization of lignocellulosic biomass

January 30, 2023

Researchers can ‘see’ crystals perform their dance moves

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

Mixing between species reduces vulnerability to climate change

NSF’s NCSES releases report on diversity trends in STEM workforce and education

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In