• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cellphone converts into powerful chemical detector

Bioengineer by Bioengineer
May 4, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With only $50 worth of components, an ordinary cellphone transforms into a sophisticated scientific instrument, capable of identifying chemicals, drugs, and pathogens

IMAGE

Credit: Peter Rentzepis

WASHINGTON, May 4, 2021 — Scientists from Texas A&M have developed an extension to an ordinary cellphone that turns it into an instrument capable of detecting chemicals, drugs, biological molecules, and pathogens. The advance is reported in Reviews of Scientific Instruments, by AIP Publishing.

Modern cellphones include high-quality cameras capable of detecting low levels of light and eliminating digital noise through software processing of the captured images. Recent work has taken advantage of this sensitivity to produce cellphone cameras that can be used as portable microscopes and heart rate detectors.

The current advance is based on two types of spectroscopy. One type, known as fluorescence spectroscopy, measures the fluorescent light emitted by a sample. Another, known as Raman spectroscopy, is useful for detecting molecules, such as DNA and RNA, that do not fluoresce or emit light at very low intensities. Both types were used to develop this cellphone detector.

The system includes an inexpensive diode laser as a light source, oriented at right angles to the line connecting the sample and the cellphone camera. The right-angle arrangement prevents back reflected light from entering the camera.

“In addition, this right-angle excitation geometry has the advantage of being easier to use for the analysis of samples where a bulk property is to be measured,” said author Peter Rentzepis.

The investigators studied a variety of samples using their constructed cellphone detector, including common solvents such as ethanol, acetone, isopropyl alcohol, and methanol. They recorded the Raman spectra of solid objects, including a carrot and a pellet of bacteria.

Carrots were chosen for this study because they contain the pigment carotene. The laser light used in their system has a wavelength that is easily absorbed by this orange pigment and by pigments in the bacteria.

The investigators compared the sensitivity of their system to the most sensitive industrial Raman spectrometers available. The ratio of signal to noise for the commercial instrument was about 10 times higher than the cellphone system.

The sensitivity of the cellphone detector could, however, be doubled by using a single RGB channel for analysis. The system has a rather limited dynamic range, but the investigators note that this problem can be easily overcome through several HDR, or High Dynamic Range, applications that combine images from multiple exposures.

The additional components, including the laser, add a cost of only about $50 to the price of a typical cellphone, making this system an inexpensive but accurate tool for detecting chemicals and pathogens in the field.

###

The article “Cell-phone camera Raman spectrometer” is authored by Dinesh Dhankhar, Anushka Nagpal, and Peter M. Rentzepis. The article will appear in Review of Scientific Instruments on May 4, 2021 (DOI: 10.1063/5.0046281). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0046281.

ABOUT THE JOURNAL

Review of Scientific Instruments publishes novel advancements in scientific instrumentation, apparatuses, techniques of experimental measurement, and related mathematical analysis. Its content includes publication on instruments covering all areas of science including physics, chemistry, materials science, and biology. See https://aip.scitation.org/journal/rsi.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0046281

Tags: BiologyChemistry/Physics/Materials SciencesDiagnosticsMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

UZH Device Pioneers Search for Light Dark Matter

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025
Unlocking Insulators: How Light Pulses Set Electrons Free

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025

DGIST Validates Clinical Feasibility of Simultaneous Cell Isolation Technology to Enhance Cancer Diagnostic Accuracy

September 8, 2025

From Layered Transition Metal Oxide to 2D Material: Unveiling the Breakthrough Discovery of 2H-NbO₂

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.