• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CCNY physicists shed light on the nanoscale dynamics of spin thermalization

Bioengineer by Bioengineer
May 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carlos Meriles Research Group

In physics, thermalization, or the trend of sub-systems within a whole to gain a common temperature, is typically the norm. There are situations, however, where thermalization is slowed down or virtually suppressed; examples are found when considering the dynamics of electron and nuclear spins in solids, where certain sub-groups behave as if isolated from the rest. Understanding why this happens and how it can be controlled is presently at the center of a broad effort, particularly for applications in the emerging field of quantum information technologies.

Reporting in the latest issue of “Science Advances,” a group of researchers based at The City College of New York (CCNY) provide new insights on the dynamics of spin thermalization at the nanoscale. The paper is entitled: “Optically pumped spin polarization as a probe of many-body thermalization,” and the work was carried out under the supervision of Carlos A. Meriles, the Martin and Michele Cohen Professor of Physics in CCNY’s Division of Science.

One of the main hurdles to investigating nanoscale thermalization is the huge disparity between the numbers of thermal and athermal spins, the latter being only a tiny fraction of the total. To show the flow of spin polarization between these groups, experiments must be simultaneously sensitive to both groups, a difficult proposition as most techniques are adapted to one group or the other but ill-suited for both. Working with physicists at the University of California, Berkeley, and Argentina’s Universidad Nacional de Cordoba, Meriles’ CCNY group developed a technique that circumvents this problem. Further, using this technique it was possible to see that under certain specific conditions, it is possible to make those isolated (‘athermal’) spins ‘communicate’ with the rest.

“In a solid, electron spins typically take the form of impurities or imperfections in the crystal lattice, whereas nuclear spins are associated to the atoms of the crystal itself and thus are way more abundant,” said Meriles. “For example, for diamond, the system we studied, electron spins are the ‘NV’ and ‘P1’ centers, and nuclear spins are the carbons in the diamond lattice.”

Because the electron spin is much stronger than the nuclear spin, carbons close to NVs or P1s experience a local magnetic field, absent for carbons that are farther away. Because of the local field they experience, hyperfine-coupled carbons have been traditionally assumed to be isolated from the rest, in the sense that, if polarized, they cannot pass this polarization to the bulk, i.e., their spin is frozen or ‘localized’, hence leading to an ‘athermal’ behavior.

“Our experiments demonstrate that the ideas above are not valid when the concentration of electron spins is sufficiently high. In this limit, we find that hyperfine coupled and bulk nuclei communicate efficiently because groups of electron spins serve as effective linkers to move around otherwise isolated nuclear spin polarization. We find this process can be really effective, leading to fast nuclear spin transport rates, exceeding even those between bulk nuclei,” said Meriles.

Overall, the CCNY team’s findings could help realize devices that use electron and nuclear spins in solids for quantum information processing or sensing at the nanoscale. Indirectly, it could also help implement states of high nuclear spin polarization that could be applied in MRI and NMR spectroscopy.

###

Media Contact
Jay Mwamba
[email protected]

Original Source

https://www.ccny.cuny.edu/news/ccny-physicists-shed-light-nanoscale-dynamics-spin-thermalization

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz6986

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsBioinformaticsBiomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.