• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Carrier-assisted differential detection

Bioengineer by Bioengineer
February 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by William Shieh, Chuanbowen Sun, and Honglin Ji


In the recent decade, various schemes of field recovery with direct detection have been investigated in short-reach optical communications. Since direct detection generally provides only intensity information, until now, signals have been mainly restricted to the single sideband (SSB) modulation format in various proposed intensity-only detection schemes. For such detection schemes, signal-signal beating interference (SSBI) is the dominant limitation. Additionally, compared to the optical spectral efficiency (SE), a high electrical SE is a more dictating factor for short-reach applications. The electrical SE is intrinsically limited for the SSB modulation format because one sideband is unfilled, and half of the electrical SE is lost. Apart from the electrical SE, SSB signals suffer from noise folding due to the square-law detection of the photodiode. Consequently, rather than SSB signals, it is highly desirable to investigate the direct detection of complex-valued double sideband (DSB) signals with field recovery.

In a new paper published in Light: Science & Application, engineers from the Department of Electrical and Electronic Engineering, The University of Melbourne, Australia developed a novel receiver scheme for detecting complex-valued double sideband signals with field recovery, called carrier-assisted differential detection (CADD). Compared with conventional single-sideband (SSB) modulation, the electrical SE is doubled without sacrificing the receiver sensitivity. In addition, no precise optical filters are needed for the CADD receiver, indicating the potential of utilizing low-cost uncooled lasers for the CADD receiver scheme.

The gist of the new scheme lies in adopting an optical interferometer and 90-degree optical hybrid in the receiver which is capable of detecting both inphase and quadrature components of the linear optical field. Furthermore, the higher-order nonlinear product is mitigated by a novel iterative cancellation algorithm (See Figure below). These engineers summarize the operational principle of their receiver:

“CADD possesses two advantages over conventional carrier-less differential detection (CDD) for field recovery: (i) CADD doubles the electrical SE compared to CDD, as CADD recovers the linear signal while CDD needs to recover the 2nd-order signal-to-signal beating term, and (ii) CADD is insensitive to chromatic dispersion, while CDD is not. This is because without a carrier, the field of CDD can reach zero, which makes differential detection impossible for large chromatic dispersion”

“The advantage of CADD over the Kramers-Kronig (KK) receiver in direct detection is analogous to that of homodyne over heterodyne receivers in coherent detection – although CADD requires a larger number of components, it reduces the optoelectronic bandwidth by half. By adopting photonic integration, either in the InP or silicon photonics (SiP) platform, the large component count in CADD will be much mitigated, while the reduced bandwidth of CADD will greatly reduce the overall implementation cost. Compared to coherent homodyne receivers, CADD does not require highly stable and low-linewidth lasers, leading to a more compact and cost-effective solution suitable for short-reach applications such as intra-data interconnects and ultra-high-speed wireless fronthaul networks” they added.

“The receiver architecture opens a new class of direct detection schemes that are scalable to high baud rate and suitable for photonic integration. It would be very useful for short-reach applications such as intra-data interconnects and ultra-high-speed wireless fronthaul networks” the engineers forecast.

###

This work was supported by Australian Research Council (ARC) Discovery Projects Under the Grants Nos. DP150101864 and DP190103724.

Media Contact
William Shieh
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0253-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.