• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

Bioengineer by Bioengineer
May 21, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Revealing both sides of the story in a single experiment has been a grand scientific challenge

IMAGE

Credit: Greg Stewart/SLAC National Accelerator Laboratory

Using a high-speed “electron camera” at the Department of Energy’s SLAC National Accelerator Laboratory, scientists have simultaneously captured the movements of electrons and nuclei in a molecule after it was excited with light. This marks the first time this has been done with ultrafast electron diffraction, which scatters a powerful beam of electrons off materials to pick up tiny molecular motions.

“In this research, we show that with ultrafast electron diffraction, it’s possible to follow electronic and nuclear changes while naturally disentangling the two components,” says Todd Martinez, a Stanford chemistry professor and Stanford PULSE Institute researcher involved in the experiment. “This is the first time that we’ve been able to directly see both the detailed positions of the atoms and the electronic information at the same time.”

The technique could allow researchers to get a more accurate picture of how molecules behave while measuring aspects of electronic behaviors that are at the heart of quantum chemistry simulations, providing a new foundation for future theoretical and computational methods. The team published their findings today in Science.

Skeletons and glue

In previous research, SLAC’s instrument for ultrafast electron diffraction, MeV-UED, allowed researchers to create high-definition “movies” of molecules at a crossroads and structural changes that occur when ring-shaped molecules break open in response to light. But until now, the instrument was not sensitive to electronic changes in molecules.

“In the past, we were able to track atomic motions as they happened,” says lead author Jie Yang, a scientist at SLAC’s Accelerator Directorate and the Stanford PULSE Institute. “But if you look closer, you’ll see that the nuclei and electrons that make up atoms also have specific roles to play. The nuclei make up the skeleton of the molecule while the electrons are the glue that holds the skeleton together.”

Freezing ultrafast motions

In these experiments, a team led by researchers from SLAC and Stanford University was studying pyridine, which belongs to a class of ring-shaped molecules that are central to light-driven processes such as UV-induced DNA damage and repair, photosynthesis and solar energy conversion. Because molecules absorb light almost instantaneously, these reactions are extremely fast and difficult to study. Ultra-high-speed cameras like MeV-UED can “freeze” motions occurring within femtoseconds, or millionths of a billionth of a second, to allow researchers to follow changes as they occur.

First, the researchers flashed laser light into a gas of pyridine molecules. Next, they blasted the excited molecules with a short pulse of high-energy electrons, generating snapshots of their rapidly rearranging electrons and atomic nuclei that can be strung together into a stop-motion movie of the light-induced structural changes in the sample.

A clean separation

The team found that elastic scattering signals, produced when electrons diffract off a pyridine molecule without absorbing energy, encoded information about the nuclear behavior of the molecules, while inelastic scattering signals, produced when electrons exchange energy with the molecule, contained information about electronic changes. Electrons from these two types of scattering emerged at different angles, allowing researchers to cleanly separate the two signals and directly observe what the molecule’s electrons and nuclei were doing at the same time.

“Both of these observations agree almost precisely with a simulation that is designed to take into account all possible reaction channels,” says co-author Xiaolei Zhu, who was a postdoctoral fellow at Stanford at the time of this experiment. “This provides us with an exceptionally clear view of the interplay between electronic and nuclear changes.”

Complementary techniques

The scientists believe this method will supplement the range of structural information collected through X-ray diffraction and other techniques at instruments such as SLAC’s Linac Coherent Light Source (LCLS) X-ray laser, which is able to measure precise details of the chemical dynamics on the shortest timescales, as recently reported for another light-induced chemical reaction.

“We’re seeing that MeV-UED is becoming more and more of a tool that complements other techniques,” says co-author and SLAC scientist Thomas Wolf. “The fact that we can get electronic and nuclear structures in the same data set, measured together yet observed separately, will provide new opportunities to combine what we learn with knowledge from other experiments.”

‘A new way of looking at things’

In the future, this technique could allow scientists to follow ultrafast photochemical processes where the timing of electronic and nuclear changes is crucial to the outcome of the reaction.

“This really opens up a new way of looking at things with ultrafast electron diffraction,” says co-author Xijie Wang, director of the MeV-UED instrument. “We’re always trying to find out how the electrons and the nuclei actually interact to make these processes so fast. This technique allows us to distinguish which comes first – the change to the electrons or the change in the nuclei. Once you get a complete picture of how these changes play out, you can start to predict and control photochemical reactions.”

###

MeV-UED is an instrument of LCLS, a DOE Office of Science user facility. The research team also included scientists from the University of Nebraska-Lincoln, Stony Brook University in New York and the University of Potsdam in Germany. This work was supported by the Office of Science.

Media Contact
Ali Sundermier
[email protected]

Original Source

https://www6.slac.stanford.edu/news/2020-05-21-researchers-capture-coordinated-dance-between-electrons-and-nuclei-light-excited

Related Journal Article

http://dx.doi.org/10.1126/science.abb2235

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsBiochemistryBiologyChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsMolecular PhysicsNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Reducing traps increases performance of organic photodetectors

January 22, 2021
IMAGE

Targeted coating improves graphene oxide membranes for nanofiltration

January 22, 2021

Astronomers discover first cloudless, Jupiter-like planet

January 21, 2021

Bringing atoms to a standstill: NIST miniaturizes laser cooling

January 21, 2021
Next Post
IMAGE

Scientists identify chemicals in noxious weed that 'disarm' deadly bacteria

IMAGE

Teleradiology enables social distancing during coronavirus disease (COVID-19) pandemic

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerBiologyTechnology/Engineering/Computer ScienceClimate ChangeGeneticsMaterialsEcology/EnvironmentPublic HealthCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthInfectious/Emerging Diseases

Recent Posts

  • Chimpanzee friends fight together to battle rivals
  • Reducing traps increases performance of organic photodetectors
  • Targeted coating improves graphene oxide membranes for nanofiltration
  • Genetic sequence for parasitic flowering plant Sapria
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In