• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Cancer-preventing protein finds its own way in our DNA

Bioengineer by Bioengineer
June 16, 2016
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Geneticists from KU Leuven, Belgium, have shown that tumour protein TP53 knows exactly where to bind to our DNA to prevent cancer. Once bound to this specific DNA sequence, the protein can activate the right genes to repair damaged cells.

All cells in our body have the same DNA, yet they’re all very different. One cell may become a brain cell, the other a muscle cell. This is because not all genes are active – or ‘switched on’ – in every cell. Professor Stein Aerts and his team study the ‘switches’ that turn genes on and off. Gaining insight into these mechanisms is very important, because genetic defects and differences may not only be in our genes, but also in the ‘switches’ that control them.

It’s a known fact that genes are activated when a protein binds to a specific sequence on our DNA. But how does this protein find its way in our extraordinarily complex DNA? Scientists have thus far been assuming that one protein could never locate the exact DNA sequence to activate a specific gene all by itself – at least not in human beings. However, Professor Aerts and his colleagues from the Department of Human Genetics at KU Leuven, Belgium, have now shown that some of these proteins are in fact capable of locating their targets autonomously. Furthermore, the composition of some DNA switches turns out to be unexpectedly simple.

“We used next-generation sequencing to test the capacity of DNA sequences to act as switches for more than 1500 DNA sequences at the same time,” explains Professor Stein Aerts. By way of comparison: in the past, researchers had to test all switches one by one. “We then used supercomputers and advanced computer models to examine the differences between effective and non-effective switches. That’s how we discovered that TP53 is able to locate the exact DNA sequence to which it needs to bind – all by itself.”

“The protein TP53 plays a crucial role in the prevention of cancer. When a cell is damaged – because of UV or radioactivity, for instance – TP53 switches on the right genes to repair the cell. A cell sometimes loses TP53, so that cancer can start developing there. In about 50% of all cancers, there’s a problem with the protein TP53. That’s why it’s so important to unravel its underlying mechanisms.”

The findings of this study constitute a promising step towards unravelling the regulatory DNA code. The new techniques that were developed for this study will now be used to unravel more complex codes and to map more DNA switches. This is necessary to pave the way for future therapies that can specifically target the DNA switches to slow down the development of cancer.

###

Media Contact

Stein Aerts
[email protected]
32-163-30710
@LeuvenU

http://www.kuleuven.be/english/news?

The post Cancer-preventing protein finds its own way in our DNA appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Tool that predicts if chemotherapy will produce debilitating side effects in older adults

January 14, 2021
IMAGE

New insights into pancreatitis

January 14, 2021

Bladder cancer — When to use chemotherapy

January 14, 2021

Study shows sharp decline in cancer screenings, diagnoses during the first COVID-19 surge

January 14, 2021
Next Post
blank

Summer session fruit fly data leads to promising new target in colorectal cancer

blank

BC Children’s Hospital researchers discover an early warning sign of transplant rejection

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In