• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, June 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Cancer-Killing Nanodaisies

Bioengineer by Bioengineer
November 11, 2014
in Cancer
Reading Time: 3 mins read
1
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have developed a potential new weapon in the fight against cancer: a daisy-shaped drug carrier that’s many thousands of times smaller than the period at the end of this sentence.

Cancer-Killing Nanodaisies

Once injected into the bloodstream, millions of these “nanodaisies” sneak inside cancer cells and release a cocktail of drugs to destroy them from within. The approach is more precise than conventional methods, and it may also prove more effective. By ensuring anti-cancer drugs reach their target in controlled, coordinated doses, nanodaisies could cut down on the side effects of traditional chemotherapy.

“By using one nanocarrier to contain two different drugs, we can potentially reduce their dose and toxicity,” said Dr. Zhen Gu, assistant professor in the Joint Department of Biomedical Engineering at NC State and UNC-Chapel Hill. “And meanwhile their anti-cancer efficacy is enhanced.”

The nanocarriers are made from a polymer called polyethylene glycol (PEG), to which researchers attach the cancer-killing drug camptothecin (CPT) like bunches of grapes on a vine. A second drug, doxorubicin, also floats in solution around the PEG.

Both drugs are hydrophobic, meaning they dislike water and shy away from it. PEG, though, is hydrophilic: When exposed to water it stretches out to maximize contact, while the T-shaped joints that hold the CPT tug in the opposite direction and fold inward. The anti-cancer drugs thus end up tucked into a protective shell of PEG. The resulting nanocarrier is shaped like a flower — hence the term “nanodaisy.”

“The idea came from thinking actively about folding proteins in nature,” noted Gu, referring to the way amino acids can assemble themselves into thousands of different shapes. “It’s a sort of bio-inspired design.”

Once folded, the nanodaisies are then injected into the bloodstream and absorbed by unwitting cancer cells, which are porous enough to let them in. The nanodaisies’ outer shells of PEG protect their payload of drugs and keep them from prematurely leaking.

The design of the nanodaisy also ensures that the two cancer drugs release at complementary speeds as their carrier comes apart inside the cancer cell. Each drug inhibits different enzymes in the cell, and they work in tandem to prevent or delay the development of drug resistance.

The result is that the drugs launch an attack on cancer that’s more closely coordinated and tightly targeted than traditional drug cocktails.

So far, in vivo testing in mice has shown that this approach produces significant accumulation of drugs in tumor sites instead of healthy organs. Gu noted that in vitro testing had also demonstrated the potential of nanodaisies to effectively target different kinds of cancer.

“It’s shown a broad killing effect for a variety of cancer cell lines, including leukemia, breast and lung cancers,” he said.

Gu has led other research that has yielded a bio-inspired “cocoon” that tricks cells into consuming anti-cancer drugs and an injectable nano-network that controls blood sugar levels in diabetics. He is supported by faculty, staff and Ph.D. students in the Joint Department of Biomedical Engineering, a partnership between NC State and UNC-Chapel Hill that tackles urgent biomedical problems.

The next step for nanodaisies is preclinical testing to determine whether they might be ready to fight cancer in humans.

For Gu, that prospect has personal significance: His father was diagnosed with cancer when Gu was still in the womb. When friends and family came to console Gu’s mother, she told them that the baby she was carrying might one day help to treat cancer.

“I don’t want to say it’s a mission, but it is a passion that drives me,” Gu explained. “Before I came to the U.S., I did research on conducting plastics for electronic devices. When I moved into the cancer treatments with nanotechnology, that’s when my mum became really excited about my work.”

Story Source:

The above story is based on materials provided by NC State University.

Share12Tweet8Share2ShareShareShare2

Related Posts

Cancer

HPV Identified as Key Driver in Tumor Formation of Rare Nasal Cancers

June 11, 2025
Duan Family Building at Mayo Clinic in Florida

Mayo Clinic Advances Availability of Heavy Particle Therapy for Aggressive Cancers in the Western Hemisphere

June 11, 2025

New Program Empowers Cancer Survivors to Reenter the Workforce with Confidence

June 11, 2025

Study Reveals How American College of Surgeons Accreditation Enhances Quality Improvement

June 11, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    69 shares
    Share 28 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MOVEO Project Launched in Málaga to Revolutionize Mobility Solutions Across Europe

Nerve Fiber Changes in Parkinson’s and Atypical Parkinsonism

Magnetic Soft Millirobot Enables Simultaneous Locomotion, Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.