• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Can we make bones heal faster?

Bioengineer by Bioengineer
December 3, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UIC researchers capture new real-time images of bone, tooth formation

IMAGE

Credit: UIC/Jenny Fontaine

A new paper in Science Advances describes for the first time how minerals come together at the molecular level to form bones and other hard tissues, like teeth and enamel.

The University of Illinois Chicago researchers who published the paper described their experiments — which captured high-resolution, real-time images of the mineralization process in an artificial saliva model — and their discovery of distinct pathways that support bone and teeth formation, or biomineralization.

“Until now these pathways, particularly at the early stages when molecules are first starting to organize into a structure, have not been understood clearly,” Reza Shahbazian-Yasser, UIC professor of mechanical and industrial engineering at the College of Engineering and corresponding author of the paper.

Shahbazian-Yasser and his colleagues observed that both direct and indirect formations of hydroxyapatite crystals — the foundation of hard tissues — can be achieved by local variations in energetic pathways for nucleation and growth.

“The control over the dissolution of amorphous calcium phosphate affects the assembly of hydroxyapatite crystals into larger aggregates,” Shahbazian-Yasser said. “Using technology developed at UIC, we found evidence that these pathways coexist simultaneously — explaining why different groups had reported seemingly different or opposite results. In addition, we now understood how hydroxyapatite materials nucleate and grow on amorphous calcium phosphate templates. The control over the nucleation and growth of hydroxyapatite will aid in developing new drugs and medical treatments to heal lost or broken bone faster or cure tooth cavities.”

To capture the images, the researchers used a unique micro-device that made it possible to use electron microscopy with a liquid model. Using this method, the researchers were able to monitor chemical reactions in the model on the smallest scale.

“Our study provides clear, new evidence of how minerals organize and grow into bone materials, and this finding has many important implications for further research on bone or teeth healing,” Shahbazian-Yasser said.

“By better understanding these pathways, scientists are one step closer to engineering ways to better treat dental diseases and bone injuries — like those from traumatic injuries — or prevent medical conditions that can develop when normal mineralization processes in the body go awry,” he said.

Medical conditions caused by dysfunctional mineralization in the body can include everything from a tendency to develop cavities to osteoporosis.

“In the next step, we would like to learn how molecular modifiers can affect the process of biomineralization, which is important to develop effective drugs,” Shahbazian-Yasser said.

###

Co-authors of the study, which was funded by the National Science Foundation (1710049), are Kun He, Michal Sawczyk, Yifei Yuan, Boao Song, Ram Deivanayagam, Cortino Sukotjo, Petr Kral and Tolou Shokuhfar of UIC; Cong Liu and Jun Lu of Argonne National Laboratory; Anmin Nie of Yanshan University; Xiaobing Hu and Vinayak Dravid of Northwestern University, and Yu-peng Lu of Shandong University.

Media Contact
Jackie Carey
[email protected]

Original Source

https://today.uic.edu/can-we-make-bones-heal-faster

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz7524

Tags: Biomedical/Environmental/Chemical EngineeringIndustrial Engineering/ChemistryMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary CAR T Cells Target HIV-Linked B Cell Cancers

October 21, 2025
blank

Exosomal miR-122-5p Fights Kidney Fibrosis via HIF-1α

October 21, 2025

New Study Highlights Health, Economic, and Societal Gains from Vaccination

October 21, 2025

Combining Flupyradifurone and Fungal Pathogen Boosts Ant Control

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    138 shares
    Share 55 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary CAR T Cells Target HIV-Linked B Cell Cancers

Exosomal miR-122-5p Fights Kidney Fibrosis via HIF-1α

New Study Highlights Health, Economic, and Societal Gains from Vaccination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.