• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, April 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cambodian study assesses 3D scanning technologies for prosthetic limb design

Bioengineer by Bioengineer
March 17, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Southampton

Cutting-edge 3D scanners have been put to the test by researchers from the University of Southampton and partners Exceed Worldwide to help increase the quality and quantity of prosthetics services around the world.

The study, carried out within the People Powered Prosthetics research group compared plaster-casts and 3D scans for prosthetic limb users in Cambodia to establish the suitability of different digital technologies.

The results, published in the Journal of Prosthetics and Orthotics, will help people to choose the right scanner for different uses – including new prosthesis design, replicating worn-out prosthesis, or limb shape monitoring – and assess whether affordable scanners in lower-income countries are fit for purpose.

A prosthetic limb is attached to the body using a bespoke socket that fits over the patient’s residual limb (or stump). Well-fitting prosthetic sockets are crucial for the wearer’s comfort and enable people to be independent and carry out functional activities like standing, walking, working and using transport.

Typically, these sockets are produced by experts using a hands-on plaster casting method. This gets excellent results but is often iterative, which comes at a cost and some inconvenience to patients.

Computer aided design and manufacturing (CAD/CAM) methods involve 3D scanning the person’s residual limb, designing the socket in software and using robotic carvers in manufacturing. The scans give a true indication of limb shape but variation might arise because limbs change as people’s muscles twitch and relax.

Dr Alex Dickinson, lead author from the Bioengineering Science Research Group, says: “Before this paper, evidence for the reliability of 3D scanners for prosthetic limb design was produced using plaster models and mannequins that don’t twitch, or have trouble balancing. We are generating and sharing first-of-kind reliability data by scanning a group of prosthesis users’ limbs directly, and comparing it to important reference data (the reliability of expert clinicians using plaster casting) to benchmark scanner accuracy and effectiveness.”

For each participant, two plaster casts were made by a prosthetist and their residual limbs were scanned after each cast.

The research found that some low-cost scanners could capture limb shape with similar repeatability (the difference between their two repeated measurements) to the expert prosthetist using their hands and plaster, but that other devices gave considerably different results between their two measurements compared to the clinician.

The Southampton researchers collaborated on the study with expert prosthetists at Exceed Worldwide, a charity that provides prosthetic limbs to thousands of people in Cambodia and across South East Asia.

Dr Dickinson adds: “As with many emerging technologies, there’s a risk that people could choose very high accuracy scanners that might limit the benefit of the approach to wealthy clinics; on the other hand, people could choose the new, very low-cost scanners which are developing alongside 3D printing, which might not be accurate enough at capturing anatomic shape for prosthetic limb design.

“This new data should help people choose the right scanner for the right job. We suggest that prosthetics design and measurement technologies should be benchmarked against the expert clinician and used to support them, never to replace their skill and training. By choosing appropriate technologies we can help make sure prosthetics services are accessible to as many people as possible, more sustainable, and with no compromise on quality.”

###

Media Contact
Steve Bates
[email protected]

Related Journal Article

http://dx.doi.org/10.1097/JPO.0000000000000350

Tags: Computer ScienceDeveloping CountriesDisabled PersonsMedicine/HealthRehabilitation/Prosthetics/Plastic SurgeryResearch/DevelopmentSoftware Engineering
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Neural plasticity depends on this long noncoding RNA’s journey from nucleus to synapse

April 16, 2021
IMAGE

Study identifies new targets in the angiogenesis process

April 16, 2021

Autism develops differently in girls than boys, new research suggests

April 16, 2021

Inspired by data warehousing: A new platform integrates disparate information systems

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationVirologyViolence/CriminalsVirusUrogenital SystemWeather/StormsVehiclesUniversity of WashingtonVaccineWeaponryVaccinesZoology/Veterinary Science

Recent Posts

  • Neural plasticity depends on this long noncoding RNA’s journey from nucleus to synapse
  • On the pulse of pulsars and polar light
  • New understanding of the deleterious immune response in rheumatoid arthritis
  • Scientists call for climate projections as part of more robust biodiversity conservation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In