• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Building a foundation for high-power tech

Bioengineer by Bioengineer
May 14, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pitt researchers receive $820K from Office of Naval Research for work on ultra-high frequency soft magnet technology

IMAGE

Credit: University of Pittsburgh

As electrification advancement accelerates and more renewables are integrated into the electric grid, improved power electronics systems are needed to convert AC or DC power into a usable form. New semiconductor device materials and advanced magnetic materials can enable an unprecedented combination of voltage levels and power handling capabilities.

However, the latest class of new switching devices, which use so-called ultra-wide bandgap (UWBG) semiconductor materials, will also require improved soft magnetic materials and manufacturing approaches not currently available.

Researchers from the University of Pittsburgh Swanson School of Engineering are working to solve that problem with new materials and manufacturing processes that will establish a foundation for UWBG semiconductors in novel power electronics switching devices. Their investigation received $820,000 in funding from the U.S. Office of Naval Research to support graduate students to explore new ideas in magnetic materials, advanced manufacturing, and advanced component design methods and techniques.

“Ultra-high frequency soft magnetics technologies, ranging from 50 kilohertz to as high as the megahertz range, are going to play an important role in the next generation of power electronics and power conversion technologies,” said Paul Ohodnicki, associate professor of mechanical engineering and materials science, director of the Engineering Science program and the Advanced Magnetics for Power and Energy Development (AMPED) consortium. “Our work will help to overcome limitations of current materials and manufacturing, and we will also develop and demonstrate new methods and techniques for optimized magnetic component design leveraging these latest advances.”

Applications for this new technology include power dense electrical power conversion technologies for electric vehicle design, aircraft electrification, or power converters for grid integration applications. For many of these, the converters need to be as small and light as possible while still handling the same amount of electric power. The higher switching frequencies made possible by these new materials would be more efficient and could, for example, increase the range of electric vehicles.

Ohodnicki is leading the project with Ahmed Talaat, visiting assistant research faculty, and Brandon Grainger, Eaton Faculty Fellow and assistant professor of electrical and computer engineering. Grainger is also associate director of the Energy GRID Institute and co-director of AMPED at the University of Pittsburgh.

The four-year project will address the need for advanced ultrahigh frequency soft magnetics and focus on creation of new ferrite-based systems, advanced manufacturing of components for optimal performance, and the design of optimized transformer and inductor components. The work will also demonstrate enhanced design and optimization tools for inductors.

“Emerging ultra-wide bandgap semiconductor materials have enormous potential for high-power applications, but there needs to be a pathway for the magnetic material and component design first,” said Brandon Grainger. “Our project will establish the fundamental research necessary to make that happen.”

###

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2021/Ohodnicki-Grainger-ONR-Funding/

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsEnergy/Fuel (non-petroleum)MaterialsSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

September 11, 2025

Creating AI Companions for Caregiver Role Transitions

September 11, 2025

Antenatal Origins and Treatments of Neurodevelopment in CHD

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.