• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bristol-led research will disrupt solar and expedite efforts toward Net-Zero target

Bioengineer by Bioengineer
February 10, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technology means solar panels could be integrated into windows, cladding

IMAGE

Credit: David Fermin

A team of researchers, led by chemists from the University of Bristol, has received significant funding from the UKRI to revolutionise the fabrication and application of photovoltaic devices, used to produce solar energy.

Imagine a city in the near future where buildings have solar panels integrated into windows, cladding and rooftops – allowing urban areas to generate their own clean and renewable energy. Thanks to a new grant from the Engineering and Physical Sciences Research Council (EPSRC) and Bristol’s Cabot Institute, that vision is set to become reality.

The Bristol-led team, together with colleagues from Northumbria University and Loughborough University, will focus on developing the formulation and processing of inorganic semiconductor junctions at the centre of thin-film PV devices. In contrast to established technologies, thin-film PV devices have a lower energy payback time (i.e. they emit less carbon during fabrication/installation). They can also be made flexible, semi-transparent and adapted to a variety of systems and infrastructures.

Professor David Fermin, Head of Bristol Electrochemistry and Solar Team at the University of Bristol, said:

“If we are to achieve a target of Net-Zero by 2050, we need technology that can mitigate our increasing demand for electricity, which is set to at least double in response to energy intensive sectors such as transport, building and manufacturing.

“Consequently, we need to deploy low-carbon energy systems into every sector of the economy. Out of all renewable energy technologies, solar is the only one with the capacity to be integrated into cities and high population areas. We need technologies that will allow us to integrate solar panels into cladding, windows and every possible infrastructure. Our project aims to develop the adaptable and low-cost PV technology which can meet this huge challenge.

“What’s more, our research can substantially decrease the fabrication costs as well as removing critical (In, Ga, Te) and toxic elements (Cd) present in current commercial technologies.”

The team will investigate complex semiconductor compounds such as Cu2ZnSn(S,Se)4 with a very precise crystal structure. Their challenge is to formulate precursors and processing methods to ensure that each atom goes in the right place.

Professor Neil Fox from Bristol explains: “If you have the rogue Sn atom occupying a site in which we expect to find Cu or Zn, then we are in trouble. You don’t want to find SnS making a separate crystal either within your device. If the material has little grains of SnS at the surface, electrons will be emitted at lower energies (shunting), decreasing the power output of the solar cells.

“An incredibly exciting aspect of our research is that we can actually ‘see’ those atoms and how they arrange themselves.”

The 3.5 year programme is set to start in early June and the team aims to produce minimodules with power conversion efficiencies above 15 %, fabricated by scalable processes. The Centre for Process Innovation Catapult is a key project partner and will be assessing manufacturability across each innovation step in the research.

Dr Devendra Tiwari is leading the research team at Northumbria University and said: “To me, the highlight and challenge of the proposal are right there in the project title – ‘Solution Processing’. Solution processing is much less capitally intensive and is much readily suited to allow integration of solar cells to scaffoldings and windows than current manufacturing technology prevalent for thin-film solar cells. It therefore offers the opportunity to produce cost-effective integrated PV systems. The challenge is to demonstrate marketable performance and process scalability and solve issues from atomistic to device level. Such multilevel versatility and expertise to realise this lab-to-fab transition is what Northumbria brings to the team.”

Dr Jake Bowers is leading the research carried out at Loughborough University and said “This project is really exciting. Fabricating thin film solar cells with low cost solution processes has the potential to significantly reduce the cost of electricity produced from photovoltaics to the end user. What’s more, the fabrication processes used require significantly less energy than the manufacturing processes used traditional silicon based photovoltaics. This provides an extra added benefit as the UK aims for its net zero targets.”

###

Media Contact
Shona East
[email protected]

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Accelerates Development of Stronger, More Durable Plastics

AI Accelerates Development of Stronger, More Durable Plastics

August 5, 2025
blank

Dynamic Laws of Multispectral Camouflage: Nature-Inspired Coding Unveiled

August 5, 2025

Revealing the Mechanisms Behind Voltage Decay in LiMn₀.₇Fe₀.₃PO₄ Cathodes During Battery Cycling

August 5, 2025

Entangled Heavy Fermions: Pioneering the Next Frontier in Quantum Computing

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound L-Lysine Boosts Pork Color Stability

Algal Breakthrough: Researchers Develop Enhanced Blue Food Dye

Chronic Illness Links to Kids’ Play and Mental Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.