• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Breakthrough in understanding enzymes that make antibiotic for drug-resistant pathogen

Bioengineer by Bioengineer
September 24, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Warwick

  • The pathogen Acinetobacter baumannii is one of three highest priority pathogens identified by WHO (World Health Organisation) for which new antibiotics are urgently needed
  • Understanding the enzymes that assemble antibiotics which can kill the pathogen is key to altering their structures to target the pathogen more effectively
  • Researchers at the University of Warwick have made a breakthrough in understanding the functions and structures of key enzymes in the assembly of an antibiotic with activity against the pathogen, which could enable more effective versions to be created

One of the WHO’s three critical priority pathogens, Acinetobacter baumannii, for which new antibiotics are urgently needed is one step closer to being tackled, as researchers from the Department of Chemistry – University of Warwick have made a breakthrough in understanding the enzymes that assemble the antibiotic enacyloxin.

Acinetobacter baumannii is a pathogen that causes hospital-acquired infections that are very difficult to treat, because they are resistant to most currently available antibiotics.

In a previous paper, researchers at the University of Warwick and Cardiff University showed that a molecule called enacyloxin is effective against Acinetobacter baumannii. However, the molecule needs to be engineered to make it suitable for treating infections caused by the pathogen in humans.

The first step to achieving this is to understand the molecular mechanisms used to assemble enacyloxin by the bacterium that makes it. In their paper ‘A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis’ published in the journal Nature Chemistry, the researchers identify the enzymes responsible for joining the two components of the antibiotic together.

The key enzyme in this process was found to be promiscuous, suggesting it could be harnessed to produce structurally modified versions of the antibiotic.

Professor Greg Challis of the Department of Chemistry at the University of Warwick comments:

“Being able to alter the structure of the antibiotic will be key in future studies to optimise it for treating infections in humans.”

In a second paper, titled ‘Structural basis for chain release from the enacyloxin polyketide synthase’ also published in Nature Chemistry, the researchers report the structure of the enzyme and that of a companion protein which plays a key role in the process.

Professor Józef Lewandowski also of the Department of Chemistry at the University of Warwick, who co-led the structural study comments:

“We found how specific parts of the enzyme and the companion protein recognise each other. Using a computer algorithm to search all publicly available bacterial genomes, we learned that these recognition elements are commonly found in other enzymes and proteins that make antibiotics and anti-cancer drugs.”

Professor Challis continues:

“Understanding how the enzymes and their companion proteins recognise each other provides important clues about the evolution of antibiotic production in bacteria. It also has the potential to be exploited for creation of new types of molecules not seen in Nature.”

###

NOTES TO EDITORS

High res images available credit to the University of Warwick at: https://warwick.ac.uk/services/communications/medialibrary/images/september2019/josef_21.jpg

Caption: “Prof Józef Lewandowski conducting nuclear magnetic resonance spectroscopy, a key techniques used in the work”

Paper 1 available to view at: https://www.nature.com/articles/s41557-019-0309-7

Paper 2 available to view at: https://www.nature.com/articles/s41557-019-0335-5

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott

Media Relations Manager – Science

University of Warwick

Tel :+44 (0) 2476 574 255 or +44 (0) 7920 531 221

E-mail: [email protected]

Media Contact
Alice Scott
[email protected]

Original Source

https://warwick.ac.uk/newsandevents/pressreleases/breakthrough_in_understanding

Related Journal Article

http://dx.doi.org/10.1038/s41557-019-0335-5

Tags: BiochemistryChemistry/Physics/Materials SciencesInfectious/Emerging DiseasesMedicine/HealthPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

NADMED Named Tier 4 Sponsor for ARDD 2025

NADMED Named Tier 4 Sponsor for ARDD 2025

August 7, 2025
Youth and OTC CBD Use: Spain’s Current Landscape

Youth and OTC CBD Use: Spain’s Current Landscape

August 7, 2025

Inhibiting Osteoclastogenesis: Egg Yolk Hydrolysate Shows Promising Effects

August 7, 2025

Challenges Managing Suicidal Behavior in Addiction Treatment

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Advances in State-of-Charge Estimation for Electric Vehicle Battery Management

Exosomes Identified as Key Players in Both Tumor Progression and Immune Defense

Rapid Color-Changing Sensor Detects Toxic Gases Instantly

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.