• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Brainstem pathway modulates pain in placebo effect

Bioengineer by Bioengineer
October 25, 2021
in Biology
Reading Time: 2 mins read
0
Brainstem Pathway Modulates Pain in Placebo Effect
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It’s not all in your head, but your expectations can sway your perception of pain intensity. Information about expectations — the driver of the placebo effect — travels from the cortex to groups of cells in the brainstem, which then modulate pain signals in the spinal cord, according to new research published in JNeurosci. 

Brainstem Pathway Modulates Pain in Placebo Effect

Credit: Crawford et al., JNeurosci 2021

It’s not all in your head, but your expectations can sway your perception of pain intensity. Information about expectations — the driver of the placebo effect — travels from the cortex to groups of cells in the brainstem, which then modulate pain signals in the spinal cord, according to new research published in JNeurosci. 

Crawford et al. measured brainstem activity with high resolution fMRI in participants as they rated the pain of a hot stimulus applied to their arm. The team conditioned participants to think three types of cream had been applied to their arm: a pain-relieving cream with lidocaine, a heat-intensifying cream with capsaicin, and Vaseline. In reality, all three creams were Vaseline, and any perceived differences in pain came from the placebo or nocebo effect (imagined increases in pain).

Placebo and nocebo effects influenced activity in the same brainstem circuit but in opposite ways. The strength of the placebo effect was linked to increased activity in an area called the rostral ventromedial medulla and decreased activity in a nucleus called the periaqueductal gray; the nocebo effect induced the opposite change. These results reveal the role of the brainstem in pain modulation and may offer a route for future treatments of chronic pain.

###

Paper title: Brainstem Mechanisms of Pain Modulation: a Within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses

Please contact [email protected] for the full-text PDF and to join SfN’s journals media list.

About JNeurosci

JNeurosci, the Society for Neuroscience’s first journal, was launched in 1981 as a means to communicate the findings of the highest quality neuroscience research to the growing field. Today, the journal remains committed to publishing cutting-edge neuroscience that will have an immediate and lasting scientific impact, while responding to authors’ changing publishing needs, representing breadth of the field and diversity in authorship.

About The Society for Neuroscience

The Society for Neuroscience is the world’s largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.



Journal

JNeurosci

DOI

10.1523/JNEUROSCI.0806-21.2021

Subject of Research

People

Article Title

Brainstem mechanisms of pain modulation: a within-subjects 7T fMRI study of Placebo Analgesic and Nocebo Hyperalgesic Responses

Article Publication Date

25-Oct-2021

COI Statement

The authors declare no competing financial interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025
HSPB1 Alters Obesity Metabolism Differently by Sex

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025

Unraveling the Mysteries of ‘Chemo Brain’

October 13, 2025

IL1B Gene Variants Linked to Schizophrenia in Iranians

October 13, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-cell Study Links CXCL16/CXCR6 to Psoriasis

AI Sensors: Redefining Materiality and Risk Today

Apomorphine Blocks Necroptosis via MLKL Inhibition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.