• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Brain’s immune cells promising cellular target for therapeutics

Bioengineer by Bioengineer
September 8, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microglia brain cells can be targeted with nanomedicines to tamp down uncontrolled inflammation activation, which causes neurodegenerative diseases

IMAGE

Credit: Nanxia Zhao

WASHINGTON, September 8, 2020 — Inspired by the need for new and better therapies for neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease, Rutgers University researchers are exploring the link between uncontrolled inflammation within the brain and the brain’s immune cells, known as microglia.

Most therapies for brain health disorders focus on the major cells of the nervous system: neurons. But microglia cells are emerging as a promising cellular target because of the prominent role they play in brain inflammation. In addition, microglial behavior can be engineered to rein in inflammation, which is caused by different factors, and the damage it causes.

In APL Bioengineering, from AIP Publishing, the group highlights the design considerations and benefits of creating therapeutic nanoparticles for carrying pharmacological factors directly to the sites of the microglia.

Microglia are essentially first responders to pathological changes within the brain and can readily clear out undesired and foreign substances.

“Emerging drugs and biological factors can be targeted and released in controlled ways within the brain if their nanoscale carriers can be engineered,” said Prabhas V. Moghe, co-author on the paper. “We believe this field is ripe for technological, biological, and clinical breakthroughs.”

The group’s ultimate goal is to tamp down the uncontrolled activation of microglial inflammation.

“Within our lab at Rutgers, we are developing a new therapeutic strategy targeted to the microglia activated by the excessive deposition of the protein alpha-synuclein,” Moghe said. “This will potentially address a major therapeutic barrier of microglial activation in neurodegenerative diseases.”

Targeting microglia in this manner may open up avenues for the development of novel therapeutics.

“Studying nanoparticle interactions with microglia can guide the design of successful nanomedicine platforms that enable targeted delivery of drugs while minimizing off-target effects and system-level toxicity,” Moghe said. “Considering the complex nature of neurodegenerative disorders, rather than solely focusing on therapies for neurons, it may be worth directing therapeutics to the mediator, microglia, whose functional restoration will protect neurons.”

###

The article, “Microglia-targeting nanotherapeutics for neurodegenerative diseases,” is authored by Nanxia Zhao, Nicola L. Francis, Hannah R. Calvelli, and Prahbas V. Moghe. It will appear in APL Bioengineering on Sept. 8, 2020 (DOI: 10.1063/5.0013178). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0013178.

ABOUT THE JOURNAL

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0013178

Tags: AlzheimerBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025
Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    50 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Motor Interventions Improve Children’s Coordination: New Study

Deep Learning Advances Gastric Cancer Image Analysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.