• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Brain’s immune cells promising cellular target for therapeutics

Bioengineer by Bioengineer
September 8, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microglia brain cells can be targeted with nanomedicines to tamp down uncontrolled inflammation activation, which causes neurodegenerative diseases

IMAGE

Credit: Nanxia Zhao

WASHINGTON, September 8, 2020 — Inspired by the need for new and better therapies for neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease, Rutgers University researchers are exploring the link between uncontrolled inflammation within the brain and the brain’s immune cells, known as microglia.

Most therapies for brain health disorders focus on the major cells of the nervous system: neurons. But microglia cells are emerging as a promising cellular target because of the prominent role they play in brain inflammation. In addition, microglial behavior can be engineered to rein in inflammation, which is caused by different factors, and the damage it causes.

In APL Bioengineering, from AIP Publishing, the group highlights the design considerations and benefits of creating therapeutic nanoparticles for carrying pharmacological factors directly to the sites of the microglia.

Microglia are essentially first responders to pathological changes within the brain and can readily clear out undesired and foreign substances.

“Emerging drugs and biological factors can be targeted and released in controlled ways within the brain if their nanoscale carriers can be engineered,” said Prabhas V. Moghe, co-author on the paper. “We believe this field is ripe for technological, biological, and clinical breakthroughs.”

The group’s ultimate goal is to tamp down the uncontrolled activation of microglial inflammation.

“Within our lab at Rutgers, we are developing a new therapeutic strategy targeted to the microglia activated by the excessive deposition of the protein alpha-synuclein,” Moghe said. “This will potentially address a major therapeutic barrier of microglial activation in neurodegenerative diseases.”

Targeting microglia in this manner may open up avenues for the development of novel therapeutics.

“Studying nanoparticle interactions with microglia can guide the design of successful nanomedicine platforms that enable targeted delivery of drugs while minimizing off-target effects and system-level toxicity,” Moghe said. “Considering the complex nature of neurodegenerative disorders, rather than solely focusing on therapies for neurons, it may be worth directing therapeutics to the mediator, microglia, whose functional restoration will protect neurons.”

###

The article, “Microglia-targeting nanotherapeutics for neurodegenerative diseases,” is authored by Nanxia Zhao, Nicola L. Francis, Hannah R. Calvelli, and Prahbas V. Moghe. It will appear in APL Bioengineering on Sept. 8, 2020 (DOI: 10.1063/5.0013178). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0013178.

ABOUT THE JOURNAL

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0013178

Tags: AlzheimerBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Unveiled: New Mechanism Enhances Plasma Confinement Performance

October 22, 2025
blank

Biochar and Moist Soils: A Breakthrough Solution to Reduce Farm Emissions Without Sacrificing Crop Yields

October 22, 2025

Palladium-Catalyzed Coupling of Propargyl Alcohol Esters with Diverse Nucleophiles Enables Synthesis of Polysubstituted Functionalized Conjugated Dienes

October 22, 2025

Vietnam’s Wise Choice Advances Scientific Progress

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1272 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    141 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LET-418/Mi-2 Modulates Intestinal Response to Pathogens in C. elegans

Understanding Neonatal Mortality in Addis Ababa NICUs

AI Discovers Physician Actions Linked to Patient Compassion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.