• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Brain’s GPS never stops working

Bioengineer by Bioengineer
March 3, 2015
in Neuroscience
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at NYU Langone Medical Center have found that navigational brain cells that help sense direction are as electrically active during deep sleep as they are during wake time—and have visual and vestibular cues to guide them. Such information could be useful in treating navigational problems, among the first major symptoms of Alzheimer’s disease and other neurological disorders.

brain

In a report on their work in mice to be published in the journal Nature Neuroscience online March 2, researchers found that head direction neurons continued to code for the “virtual” direction of their gaze during sleep. In fact, during Rapid Eye Movement (REM) sleep—a stage known for intense dreaming activity in humans and during which brain electrical activity is virtually indistinguishable from wake—the ‘needle’ of the brain compass in the mice surprisingly moved at the same speed than observed during wake. During slow-wave periods of sleep, it showed a 10-fold acceleration of activity, as if the mice turned their head 10 times faster than during the time they were awake.

“We have long known that the brain is at work during sleep,” says senior study investigator Gyorgy Buzsaki, MD, PhD, the Biggs Professor of Neural Sciences at NYU Langone and its Neuroscience Institute. “But now we know how it is working in one of the seemingly simpler senses—head orientation—or our sense of where we look at in any given space. The direction sense is an essential part of our navigation system, since it can reset our internal compass and maps instantaneously, as, for example, when we emerge from the subway and try to orient ourselves.”

He further adds: “Finding that the activity of head direction neurons shows coordinated patterns during sleep—as if substituting for the gaze shifts in the navigating animal—demonstrates the brain’s efforts to actively explore and coordinate its operations even when it disengages from its interactions with the environment.”

Buzsaki says the results further support his theory that brains in mammals do not passively wait around to receive sensory inputs, but actively pursue them, just like the active sense of head directionality persisted during sleep in the mice.

For the two-year study, researchers videotaped the head movements of mice and recorded the electrical activity in the head-direction regions of the sleeping animals, specifically in the antero-dorsal thalmic nucleus and postsibiculum regions of the brain. These recordings were then compared with similar readings made in the same mice while they were awake and navigating in various environments.

Adrien Peyrache, PhD, a postdoctoral fellow and lead author of the study, further concludes, “The coordinated activity during the majority of sleep likely represents a consolidation of places, events and times, a sort of navigational backup system in the brain, during which the brain stores a map to memory.”

Buzsaki says the research team plans to monitor other parts of the mouse brain involved in more complex forms of behaviors to see if similar neural activity patterns are at work. Researchers also plan experiments to test whether head direction and navigation can be electrically controlled and predicted in advance.

Story Source:

The above story is based on materials provided by NYU Langone Medical Center.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In