• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brain anatomy links cognitive and perceptual symptoms in autism

Bioengineer by Bioengineer
June 19, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RIKEN

Neuroscientists at the RIKEN Center for Brain Science (CBS) and University College London have found an anatomical link between cognitive and perceptual symptoms in autism. Published in the Journal of Neuroscience, the study identified a posterior region of the brain whose size–amount of gray matter–is related to both cognitive rigidity and overly stable visual perception, two symptoms of autism that until now were only conceptually related.

Mental inflexibility is a hallmark symptom of autism spectrum disorder (ASD). This is best seen in restricted and repetitive behaviors, which are required for an ASD diagnosis. These behaviors can range from stereotyped and repetitive movements to repetitive thoughts. Perception in people with ASD can also be less flexible than in others. This can be understood by considering a line drawing of a transparent cube (called a Necker cube, see Figure). When looking at this drawing, the 3-D structure of the cube seems to spontaneously invert; the front becomes the back and then becomes the front again. This type of perceptual switching is called “bistable” perception. In the case of autism however, perception is often overly stable, and does not switch back and forth as often as it does in others.

The team of researchers sought to find a physical neuroanatomical link between these two characteristics of autism. They recruited people with and without ASD to perform two simple computer-based tests and an MRI scan. The first computer test assessed perceptual stability. Participants viewed a bistable image in which the front and back of a cylindrical shape switch back and forth. The second test evaluated cognitive rigidity, and was designed specifically for this study. Participants were shown shapes on a display and asked to choose a rule to follow: select the brightest shape or a specific shape. The researchers counted the numbers of times each participant reported a switch in perception during the first test and the number of times they spontaneously switched rules in the second test. These measures allowed the researchers to quantify perceptual stability and cognitive rigidity for each participant.

As expected, they found that perception of the bistable image switched much less frequently in people with ASD than in the control participants. They also found that people with ASD repeated the same rule choice–brightness or shape–for longer periods of time before switching rules. A control switching test in which participants were told to switch rules did not differ between groups, meaning that switching rules was not difficult for those with ASD, but that when acting freely, they chose to switch less often than the other participants.

The results from the rule-switching task were particularly encouraging. As first author Takamitsu Watanabe from RIKEN CBS explains, “cognitive rigidity in high-functioning autism is known to be difficult to detect and quantify in conventional psychological paradigms. Here, we overcame this issue with a new spontaneous task-switching test.” With these results, the team was confident that their tests were good measures of perceptual stability and cognitive rigidity.

The team then took these individual scores and tested whether they correlated with the brain anatomy seen on the MRI scans. They found that one part of the brain in particular was related to both perceptual stability and cognitive rigidity. Lower density of neurons in the posterior superior parietal lobule was associated with both less frequent perceptual switching and less frequent rule switching, and was also associated with the severity of the participant’s restricted and repetitive behaviors.

“We think that the posterior superior parietal lobule is the neural basis for both overly stable perception and cognitive inflexibility, two seemingly different symptoms in autism,” says Watanabe. “Knowing the importance of this brain region, we can now work to identify how it produces its effects and test whether manipulating its neural activity can mitigate these ASD symptoms.”

###

Reference:

Watanabe T, Lawson RP, Walldén YSE, Rees G (2019). A neuroanatomical substrate linking perceptual stability to cognitive rigidity in autism. Journal of Neuroscience. doi:

Media Contact
Adam Phillips
[email protected]

Related Journal Article

http://dx.doi.org/10.1523/JNEUROSCI.2831-18.2019

Tags: BehaviorBiologyMemory/Cognitive ProcessesMental HealthneurobiologyPerception/AwarenessPhysiologySocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

August 14, 2025
NASP Controls Histone Turnover Behind PARP Resistance

NASP Controls Histone Turnover Behind PARP Resistance

August 14, 2025

Big-Data Longevity Expert Enhances HonorHealth Research Institute’s Mission to Extend Healthy Lifespans

August 14, 2025

Expanding Cytokine Receptors Reprograms T Cells

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound AI Unveils Groundbreaking Study on Using AI and Ultrasound Images to Predict Delivery Timing

County-Level Variations in Cervical Cancer Screening Coverage and Their Impact on Incidence and Mortality Rates

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.