• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 21, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Boosting host immune defenses to treat tuberculosis

Bioengineer by Bioengineer
November 12, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NIAID via Flickr


Current treatment regimens for Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, are long, complex, and hard for people to sustain. Moreover, the bacteria often develop drug resistance, and many people harbor multi-drug-resistant strains. In 2018 alone, nearly 1.5 million people died from tuberculosis worldwide.

Now, a study in iScience suggests a new approach that might help: making people’s cells better at killing Mtb by harnessing RNA sensors in our cells, which detect the RNA of invading pathogens.

RNA sensing is part of our first-line immune defense. For the first time, researchers led by Anne Goldfeld, MD, of Boston Children’s Hospital’s Program in Cellular and Molecular Medicine, showed that RNA sensing is important in inhibiting Mtb’s growth once it gets inside cells.

By studying infected cells, the team showed that Mtb activates several major RNA sensors — RIG-I, MDA5, PKR, and MAVS — that in turn inhibit bacterial growth. When they disrupted any of these sensors using gene-editing methods such as CRISPR, Mtb grew to significantly higher levels in human cells.

“This was a key breakthrough, because RNA sensor molecules were previously thought to be involved in fighting viruses and not bacteria,” Goldfeld says. “It suggested that enhancing the activity of these RNA sensors via drug therapy could curb MTb growth.”

Repurposing nitazoxanide for TB

Recently, Goldfeld’s lab, together with the lab of her colleague Sun Hur, PhD, showed that an FDA-approved antiparasitic drug called nitazoxanide (NTZ) inhibits the Ebola virus, and that it works by amplifying RNA sensor activities. That finding, coupled with the new discovery that RNA sensors inhibit Mtb growth within cells, led Goldfield’s team to try NTZ in tuberculosis.

“We showed that NTZ amplifies the activities of RNA sensors once they have been triggered by Mtb RNA,” Goldfeld says. “And unexpectedly, we found that NTZ also amplifies MTB’s stimulation of RNA sensor activity.”

The net result was that NTZ increased production of interferon and IFITM3, important elements of the immune response against tuberculosis, and significantly inhibited Mtb growth inside cells. Although more research is needed to better understand how NTZ does all this, Goldfeld hopes these studies will open a new approach to alleviate the global burden of tuberculosis.

“NTZ is low in cost and available as an oral drug, including a syrup formulation for children, making it an easily accessible treatment,” she says. “We think NTZ or a derivative drug could complement traditional tuberculosis regimens by boosting host defenses to kill Mtb. The power of this approach is that targeting host factors will not precipitate or increase antibiotic resistance in bacteria.”

###

Shahin Ranjbar and Viraga Haridas of the Program in Cellular and Molecular Medicine (PCMM) were co-first authors on the paper. Coauthors were Aya Nambu, Luke Jasenosky, Supriya Sadhukhan, and James Falvo of PCMM; Thomas Ebert and Veit Hornung of Ludwig-Maximilians-Universität München (Munich, Germany); and Gail H. Cassell of Harvard Medical School.

This work was supported by the National Institutes of Health (AI125075), the Annenberg Foundation, the Ragon Institute, Romark Inc., John Moores, Jeanne Sullivan, the Campbell Foundation, and a lab gift from Romark, Inc., which makes NTZ.

Media Contact
Kristen Dattoli
[email protected]
617-919-3141

Related Journal Article

http://dx.doi.org/10.1016/j.isci.2019.11.001

Tags: Immunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite LetA defines a structurally distinct transporter family as a headline for a science magazine post, using no more than 7 words

January 21, 2026

Rewrite Construction of complex and diverse DNA sequences using DNA three-way junctions as a headline for a science magazine post, using no more than 7 words

January 21, 2026

Rewrite Four camera-type eyes in the earliest vertebrates from the Cambrian Period as a headline for a science magazine post, using no more than 7 words

January 21, 2026

Rewrite Identification of an allosteric site on the E3 ligase adapter cereblon as a headline for a science magazine post, using no more than 7 words

January 21, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    79 shares
    Share 32 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite LetA defines a structurally distinct transporter family as a headline for a science magazine post, using no more than 7 words

Rewrite Construction of complex and diverse DNA sequences using DNA three-way junctions as a headline for a science magazine post, using no more than 7 words

Rewrite Four camera-type eyes in the earliest vertebrates from the Cambrian Period as a headline for a science magazine post, using no more than 7 words

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.