• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Blueprint for plant immune response found

Bioengineer by Bioengineer
January 11, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Finding provides potential for increased disease resistance in crops

IMAGE

Credit: WSU Photos

Washington State University researchers have discovered the way plants respond to disease-causing organisms, and how they protect themselves, leading the way to potential breakthroughs in breeding resistance to diseases or pests.

The results were published in the journal Plant Physiology and describe how plants respond to a molecule released during damage caused by infection or outside entities. The paper shows how adenosine 5-triphospate (ATP), a part of DNA and energy production in cells, becomes a signal for injury or infection when outside cells. That signal triggers defense responses in plants.

“We found the pathways that connect ATP to plant cell responses protecting the plant,” said David Gang, WSU professor in the Institute of Biological Chemistry.

The science behind this is exciting, but the major impact on society will come from the future use of this information, said WSU Plant Pathology assistant professor Kiwamu Tanaka.

“This is a blueprint for how a plant’s immune system works,” Tanaka said. “In some respects, even the most innovative breeding programs are still groping around in the dark to build resistance. But if you have the blueprint, you can reach the goal much faster.”

Gang compared it to a common experience people have with automobiles.

“If your car isn’t working right, you often have to take it to a mechanic because cars are so complex now,” he said. “They plug the car into a sensor and can see the problem quickly. If I did it, I’d have to guess and hope I get it right. That’s how traditional breeding is, much of their work is challenging because they have to work with so many complex potential solutions. Now they’ll have a schematic to eliminate a lot of that extensive effort.”

Doing the science

To find the correct pathways, the research team used wild plants as well as plants changed in the major pathways of plant defense. The scientists would trigger an ATP response in a modified sample to trace the signal’s path to the receptor, then reproduce that in the other samples. It was time-consuming science, with a big payoff, said WSU postdoctoral researcher, and lead author on the paper, Jeremy Jewell.

“It was like following a single noodle in a huge bowl full of them,” Jewell said. “Extra-cellular ATP turns on defense responses partly through these major defense pathways, and partly independently of them, but all these strands work together. When we found new players in this immune pathway, it was a great feeling.”

How ATP works

ATP is an energy molecule that is necessary for life to function, Tanaka said. It’s very well researched and understood inside of cells. But ATP fundamentally changes when it is outside a cell in an organism.

“Extra-cellular ATP is a damage signal to the surrounding cells,” Tanaka said. “ATP is only outside a cell when something is damaged, so it’s a perfect trigger for immune responses.”

The receptor that receives the damage signal ATP was found in 2014, but until now scientists didn’t know how this signal caused an immune response in plants.

“Future plant breeding can now increase plant defense or resistance based on knowing these pathways,” Gang said. “They can be bred to respond faster, or to not waste energy by turning on the entire immune system if only a specific defense is required. The potential for this is pretty incredible for helping plants and crops.”

###

Funding support comes from the National Science Foundation (IOS-1557813).

Media Contact
Kiwamu Tanaka
[email protected]
509-335-6418

Original Source

http://news.cahnrs.wsu.edu/article/blueprint-for-plant-immune-response-found-unlocking-potential-for-increased-disease-resistance-in-crops/

Related Journal Article

http://dx.doi.org/10.1104/pp.18.01301

Tags: AgricultureBiochemistryFertilizers/Pest ManagementMolecular BiologyPhysiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Stimulants on Wheat Germination and Growth

Impact of Stimulants on Wheat Germination and Growth

September 9, 2025
Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

September 9, 2025

Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

September 9, 2025

Parasite Infection Alters Rat Blood and Tissue Health

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Antibody–Bottlebrush Prodrugs Revolutionize Targeted Cancer Therapy

Researchers Discover Innovative Approach to Unlocking the Power of Swarm Intelligence

New Study Reveals IFITM3 as a Crucial Factor in Immunotherapy Success for Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.