• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Blood cells could hold master clock behind aging

Bioengineer by Bioengineer
February 7, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International team finds blood cell DNA stays steady and defines cellular age

IMAGE

Credit: Case Western Reserve University School of Medicine


Blood cells could hold the key to aging, according to new research out of Case Western Reserve University School of Medicine. In a study published in Aging Cell, researchers found human blood cells have an intrinsic clock that remains steady even after transplant. The researchers say the clock could control human aging and may underlie blood cancers.

Shigemi Matsuyama, DVM, PhD, cell biologist and associate professor of medicine at Case Western Reserve University School of Medicine, led an international team of researchers in studying the clock. The team measured cellular age in blood cells transplanted from healthy donors to leukemia patients, focusing on donor-recipient pairs of very different ages.

“This study is related to the fountain of youth,” Matsuyama said. “We found young blood cells stay young in older people. There was no accelerated aging of young blood cells in an older human body.” Matsuyama’s team found the other direction was also true–blood cells from adult donors transferred to a child stay older. The cells retained their intrinsic age nearly two decades after transplant.

Their inherent steadiness suggests blood cells could be the master clock of human aging, as they are not easily influenced by their environment, Matsuyama said.

The study showed blood cells retain epigenetic patterns in DNA methylation–chemical groups attached to DNA–that can be used to calculate their age. Despite substantial age differences between donor and recipient (up to 49 years), the DNA methylation age of transplanted blood reflected the age of the donor, even after many years of exposure to the recipient’s body, wrote the authors. Said Matsuyama, “DNA functions as a timekeeper of our age.”

DNA methylation as a predictor of age was first described in 2013 by Matsuyama’s collaborator on the study, biostatistician Steve Horvath, PhD, of the University of California, Los Angeles. “He found the formula. The mechanism, and whether cells in the body synchronize DNA methylation age, wasn’t clear,” Matsuyama explained. “I’m not a mathematician. I’m a cell biologist. So, we collaborated to investigate the mechanism of the epigenetic clock in an experimental system in my lab.”

Matsuyama tested blood samples collected regularly as part of transplant monitoring, with help from the Case Comprehensive Cancer Center. He expanded his sample repository via leukemia researchers at the University of Oslo, in Norway, who heard about his work at the 2016 Keystone Symposia on aging held in Santa Fe, New Mexico. Horvath crunched cellular ages using 353 distinct methylation sites found on blood cell DNA.

Together, the researchers provided the first experimental evidence that the aging clock of blood cells is cell-intrinsic, and not set by interactions with other cell types in the body.

They are now working to identify mechanisms that can change the clock. “In cancer cells, the clock is broken,” Matsuyama said. DNA methylation patterns are unstable in cancerous blood cells and often show odd aging–200 or 5 years old in a 50 year old patient, for example. “It does not match at all with the actual age.” Matsuyama cautions that this is why, although it may sound appealing, he doesn’t yet recommend “therapeutic” cell infusions to try to maintain one’s youth.

“We don’t know if blood cells serve as a master clock that could synchronize other cells. We just don’t know yet,” he said.

Instead, Matsuyama’s team is working to understand why epigenetic age differences exist in cancer cells, and how they could be overcome. “It may be by turning on or off certain genes within the cells, we can reset the clock.”

Recent studies show the DNA age of human cells can be used as a biomarker to predict the risk of age-associated diseases, such Alzheimer’s disease, cardiovascular disease, and others. Last year, Horvath and Matsuyama helped publish an article reporting that DNA age is significantly accelerated in Progeria patients who suffer from premature aging. Matsuyama and his colleagues now have several studies underway to uncover the mechanism of age-dependent DNA methylation, and to understand how factors such as diet, exercise, and oxygen levels influence epigenetic clocks.

###

Søraas A, et al. “Epigenetic age is a cell-intrinsic property in transplanted human hematopoietic cells.” Aging Cell (2019).

For more information about Case Western Reserve University School of Medicine, please visit: case.edu/medicine.

Media Contact
Ansley Gogol
[email protected]
216-368-4452

Original Source

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=1633&news_category=8

Related Journal Article

http://dx.doi.org/10.1111/acel.12897

Tags: AgingAlternative MedicinecancerCardiologyCell BiologyClinical TrialsGeneticsMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

OPTILATER: Surveying Long-Term Cancer Survivor Care

October 24, 2025

Digital Portal Enhances Cancer Genetic Testing Care

October 24, 2025

Exploring the Intra-Tumoral Microbiome and Its Role in Cancer: A Comprehensive Review

October 24, 2025

Pilot Study Finds Baduanjin Relieves Menopausal Symptoms in Breast Cancer Survivors

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    189 shares
    Share 76 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eco-Friendly SiO2 Nanoparticles Boost Wound Healing

Overcoming Challenges in South Africa’s Long-Term Care Staffing

Assessing Airway Function After Inhaled Asthma Therapy

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.