• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

“Birthday” of the roof of the world recalibrated

Bioengineer by Bioengineer
December 9, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Third Pole rose to modern height much later than previously thought

IMAGE

Credit: TPE

As the roof of the world, the Third Pole centered on the Tibetan Plateau can be easily considered a permanent presence. However, it is not. The place where Mount Everest stands today was once underwater. Exactly when the Third Pole grew to its current height has been a topic of debate for years. However, a recent study published in Science Advances proves, through fossil analysis, that much of the Third Pole only grew to its modern height over the past 10 million to 20 million years, rather than 40 million years ago (Ma) as previously inferred.

Using magnetostratigraphic and radiochronologic dating, the study found that low-elevation tropical fossils retrieved from the central Third Pole were deposited about 40 million years ago. However, an analysis of paleosols (fossil soils) using oxygen paleoaltimetry showed that paleosols corresponding with the elevation of the present day date from about 25.5 Ma to 21 Ma, rather than over 35 Ma – the figure often previously used to date the age of the Tibetan Plateau.

“This means the Third Pole was still lower than 2300 m about 40 million years ago,” said FANG Xiaomin, lead author of the study from Institute of Tibetan Plateau Research (ITP), Chinese Academy of Sciences (CAS). “It only grew to 3500 m and above around 26 million to 21 million years ago.”

“What we found is not entirely news,” observed FANG, referring to findings of the First Tibetan Plateau Expedition and Research (FTEP). That project, which dated from the 1970s and was CAS’s first to focus on the Third Pole, had already suggested approximately the same period for the “birth” of the plateau, based on research involving over a thousand scientists from 18 countries. However, the FTEP finding was largely discredited and discarded over the years as later oxygen-isotope-based estimates argued that a fully elevated plateau existed at least 35 million years ago. Interestingly, FANG’s study, which “reconciles the FTEP results,” was actually part of the Second Tibetan Plateau Expedition and Research (STEP), a science project launched in 2018 by CAS to reassess the environment of the Third Pole given rapid climate changes over recent years.

The much debated “birthday” of the roof of the world is not just an academic issue concerning how the Third Pole uplifted over history. It also helps shape our understanding of several processes highly relevant to regional and global climate. These include continental collision and uplift geodynamic mechanisms, Asian atmospheric circulation, surface processes and biotic evolution. With this recalibrated elevation history, there is still much rethinking to do.

###

Media Contact
XIA Cuihui
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba7298

Tags: Earth ScienceGeographyGeophysics/GravityOld WorldPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Thalamus Mechanism Drives Recovery in Consciousness Disorders

Proteomic Mass Spectrometry Identifies Menstrual Blood Markers

Metformin Shields Retinal Cells, Stabilizes Vision in Glaucoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.