• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Bird flu shuffle probes viral compatibility

Bioengineer by Bioengineer
February 12, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How well can H7N9 and H5N8 genetically mix with a seasonal strain?

When influenza viruses that infect birds and humans meet in the same cell, they can shuffle their genomes and produce new strains that might have pandemic potential. Think of this process, called reassortment, as viruses having sex.

In the last several years, public health officials have been monitoring two varieties of bird flu viruses with alarming properties: H7N9 and H5N8. Scientists at Emory University School of Medicine have been probing the factors that limit reassortment between these strains and a well-known strain (H3N2) that has been dominating the last few flu seasons in the United States.

The good news is that “packaging signals” on the bird flu viral RNA genomes were often incompatible with the H3N2 viruses. That means it could be difficult for segments of the genome from the bird viruses to get wrapped up with the human viruses. Mix + match still occurred at a low level, particularly with H5N8.

The results are scheduled for publication the week of Feb. 11 in Proceedings of the National Academy of Sciences.

“What we see is that sequence differences between the human and avian viruses limit the potential for reassortment,” says Anice Lowen, PhD, associate professor of microbiology and immunology at Emory University School of Medicine. “But the low level of compatibility could be more significant if reassortant viruses have an advantage, for example, because of pre-existing immunity. It highlights the continued need for surveillance.”

Graduate student Maria White, who conducted most of the experiments, emphasizes that she was not handling intact infectious avian flu viruses, which could be dangerous. Rather, she took just a bit of genetic information from them: the packaging signals for the hemagglutinin-encoding segments.

Hemagglutinin is one of the main external proteins enabling the virus to bind and infect our cells. And packaging signals are parts of the viral RNA genome that tell an infected cell to wrap up that piece of RNA into a new virus. They’re sort of like our chromosomes, but much smaller.

White inserted only the packaging signals into H3N2 viruses, which are studied in the laboratory under biosafety level 2 conditions. Careful and rigorous, but no space suits needed. She found that the hybrid viruses still were able to replicate well.

However, when she co-infected the hybrid viruses with standard H3N2, the hybrids were not taken up into newly produced viral particles as well as H3N2. A similar thing happened when White co-infected guinea pigs, and had those guinea pigs in the same cage with a healthy animal. Mostly regular H3N2 virus was transmitted, but she did detect transmission of viruses with H5 packaging signals.

“These findings suggest that H5 packaging signals are sufficiently compatible with H3N2 viruses to allow a low level of transmission,” the authors write.

White says the packaging incompatibility could come from interactions between viral RNAs as well as between bird flu RNA and human flu protein. She adds that other factors could come into play in determining compatibility, such as differences in which tissues the viruses like to infect.

Regular reports of H5N8 outbreaks come from poultry farmers around the world, but so far H5N8 has only been a problem in birds. The concern is that humans frequently come into contact with the birds, giving an opportunity for cross-species transmission and reassortment with seasonal flu viruses, Lowen says. Additional risk comes from the possibility of point mutations that could further alter the properties of reassorted viruses.

###

White is in the Immunology and Molecular Pathogenesis graduate program. Research specialist Hui Tao and assistant professor John Steel, PhD contributed to the paper.

This work was funded in part by the Emory-UGA Center of Excellence in Influenza Research and Surveillance (CEIRS), Health and Human Services Department contract HHSN272201400004C and by National Institute of Allergy and Infectious Diseases (R01AI125268).

Media Contact
Quinn Eastman
[email protected]
404-727-7829

Related Journal Article

http://news.emory.edu/stories/2019/02/flu_reassortment_lowen_pnas/
http://dx.doi.org/10.1073/pnas.1818494116

Tags: Infectious/Emerging DiseasesMedicine/HealthVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.