• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bird droppings defy expectations

Bioengineer by Bioengineer
September 24, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Andrew Magill

For every question about bird poop, uric acid appears to be the answer.

Why are bird droppings so hard to remove from buildings? Uric acid.

Why are they white and pasty? Uric acid.

Why are they corrosive to car paint and metal structures? Uric acid.

These answers are based on the prevailing wisdom that ranks uric acid as the primary ingredient in bird “poop,” which is comprised mostly of urine. (Birds release both solid and liquid waste at the same time. The white substance is the urine).

But according to Nick Crouch, a scientist at The University of Texas at Austin, uric acid can’t be the answer. That’s because there is no uric acid in excreted bird urine.

And after analyzing the excretions from six different bird species – from the Great Horned Owl to the humble chicken – he’s pretty positive of that statement.

“It was easy to tell that what we had and that it was not uric acid,” Crouch said.

The results were published in the Journal of Ornithology in August 2019. The study’s co-authors are Julia Clarke, a professor at the Jackson School of Geosciences, where Crouch is currently a postdoctoral researcher, and Vincent Lynch a chemist and research scientist at the UT College of Natural Science.

Crouch studies bird evolution and biodiversity – the chemistry of bird waste is not his usual research wheelhouse. However, Crouch decided to investigate the uric acid question after a conversation in 2018 with the late Jackson School Professor Bob Folk, who claimed that bird waste didn’t contain uric acid.

“Sometimes you just get presented with a really weird question and you want to know the answer,” Crouch said. “That was this – I had no idea if [Folk] was right or wrong beforehand, but I was really interested to have a look.”

Folk had looked into the question himself in the 1960s and found no sign of the substance in samples collected in 17 species.

“Bob folk was a creative and boundary pushing scientist who primarily was interested in rocks,” Clarke said. “It is a testament to his limitless creativity that he took on what he referred to as his ‘bird paper'”

Folk published a paper in 1969 describing the X-ray diffraction workup and solubility tests that comprised his analysis. But his work was challenged by a 1971 paper that found evidence for uric acid in waste from Budgies, a type of parrot, using the same sort of X-ray diffraction analysis used by Folk.

Crouch said that he thought that running the analyses again using modern technology could help settle the question. Although X-ray diffraction hasn’t changed much over the past 50 years, the technology for analyzing its results – which consist of distinctive scattering patterns created when X-rays are deflected by different chemicals present in a substance – has become much more accurate and accessible over the decades.

As for the samples themselves, most came fresh from birds kept at the Austin Zoo, while the chicken waste sample came from a backyard flock owned by Crouch’s neighbors. All together, the samples covered a good swath of bird diversity – including species from the three major groupings of birds, a variety of diets and flightless species. But none of the samples produced an X-ray diffraction pattern consistent with uric acid. The analysis found ammonium urate, struvite and two unknown compounds.

Based on findings from other research, Crouch said that the substances are probably the result of bacteria inside the bird’s gut breaking down uric acid before it is excreted. Research conducted by other scientists having identified a diverse array of bacteria inside the digestive organs of birds that do just that.

Sushma Reddy, an associate professor and the Breckenridge Chair of Ornithology at the University of Minnesota, said she was surprised by the research findings and thinks they will spur more research into bird physiology.

“It goes against the old doctrine that we learn,” Reddy said. “It’s pretty incredible that we live in this time where we can reanalyze with incredible technologies these things that we took for granted.”

Crouch said that this research opens the door to new research questions, from the power of the bird microbiome to identifying the two unknown substances. He said that most of all, it shows the value of taking the time to question conventional wisdom.

“I had no idea I was going to work on bird pee,” Crouch said, “but I find myself with so many new questions about the avian microbiome, which shows how our research can take us in unexpected and exciting directions.”

###

For more information, contact: Anton Caputo, Jackson School of Geosciences, 512-232-9623; Monica Kortsha, Jackson School of Geosciences, 512-471-2241

Media Contact
Monica Kortsha
[email protected]

Original Source

http://www.jsg.utexas.edu/news/2019/09/bird-droppings-defy-expectations/

Tags: BacteriologyBiochemistryBiologyPets/EthologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025
Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

Breakthrough in Pancreatic Precision: Novel Test Revolutionizes Diagnosis and Treatment of Hereditary Pancreatitis

SeoulTech Scientists Detect Elevated PAH Levels in Popular Foods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.