• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Biosensors monitor plant well-being in real time

Bioengineer by Bioengineer
February 11, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors

IMAGE

Credit: Thor Balkhed

Researchers at Linköping University, Sweden, have developed biosensors that make it possible to monitor sugar levels in real time deep in the plant tissues – something that has previously been impossible. The information from the sensors may help agriculture to adapt production as the world faces climate change. The results have been published in the scientific journal iScience.

The primary source of nutrition for most of the Earth’s population is mainly plants, which are also the foundation of the complete ecosystem on which we all depend. Global population is rising, and rapid climate change is at the same time changing the conditions for crop cultivation and agriculture.

“We will have to secure our food supply in the coming decades. And we must do this using the same, or even fewer, resources as today. This is why it is important to understand how plants react to changes in the environment and how they adapt”, says Eleni Stavrinidou, associate professor in the Laboratory of Organic Electronics, Department of Science and Technology at Linköping University.

The research group at Linköping University led by Eleni Stavrinidou, together with Totte Niittylä and his group from Umeå Plant Science Centre, has developed sugar sensors based on organic electrochemical transistors that can be implanted in plants. The biosensors can monitor the sugar levels of trees in real time, continuously for up to two days. The information from the sensors can be related to growth and other biological processes. Plants use sugars for energy, and sugars are also important signal substances that influence the development of the plant and its response to changes in the surrounding environment.

While biosensors for monitoring sugar levels in humans are widely available, in particular the glucometer used by people who have diabetes, this technology has not previously been applied to plants.

“The sensors now are used for basic plant science research but in the future they can be used in agriculture to optimise the conditions for growth or to monitor the quality of the product, for example. In the long term, the sensors can also be used to guide the production of new types of plant that can grow in non-optimal conditions”, says Eleni Stavrinidou.

The mechanisms by which plant metabolism is regulated and how changes in sugar levels affect growth are still relatively unknown. Previous experiments have typically used methods that rely on detaching parts of the plant. However, the sensor developed by the research group gives information without damaging the plant and may provide further pieces of the puzzle of how plant metabolism works.

“We found a variation in sugar levels in the trees that had not been previously observed. Future studies will focus on understanding how plants sugar levels change when plants are under stress”, says Eleni Stavrinidou.

###

The research is mainly funded by the European Union’s Horizon 2020 research and innovation programme. Additional funding comes from: the Wallenberg Wood Science Center, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the Swedish Research Council, and the Swedish Strategic Research Area in New Functional Materials (AFM) at Linköping University.

The article: “Diurnal in Vivo Xylem Sap Glucose and Sucrose Monitoring Using Implantable Organic Electrochemical Transistor Sensors” Chiara Diacci, Tayebeh Abedi, Jeewoong Lee, Erik O. Gabrielsson, Magnus Berggren, Daniel T. Simon, Totte Niittylä, Eleni Stavrinidou iScience 2020 doi: 10.1016/j.isci.2020.101966

Footnote: The plants used in the experiments are hybrid aspen, Populus tremula.

Media Contact
Eleni Stavrinidou
[email protected]

Original Source

https://liu.se/en/news-item/biosensorer-overvakar-vaxters-valmaende-i-realtid

Related Journal Article

http://dx.doi.org/10.1016/j.isci.2020.101966

Tags: Chemistry/Physics/Materials SciencesClimate ChangeMaterialsPlant SciencesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025
New Study Reveals How Lymphoma Reconfigures the Human Genome

New Study Reveals How Lymphoma Reconfigures the Human Genome

August 22, 2025

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

New Study Reveals How Lymphoma Reconfigures the Human Genome

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.