• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bioorthogonally catalyzed lethality strategy generates targeting drugs within tumor

Bioengineer by Bioengineer
January 25, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Cancer is the second leading cause of death in the world. The number of deaths and incidences is increasing each year. The metal-based anticancer drugs were used clinically worldwide, but suffer from poor selectivity, serious side effects and drug resistance. Tumor-targeting drug development is the basis for precise cancer treatment.

Recently, Professor Hongke Liu of Nanjing Normal University, Professor Jing Zhao and Academician Zijian Guo of Nanjing University have made breakthrough achievements in anticancer drug development. They proposed a “bio-orthogonally catalyzed lethality” (BCL) strategy (Figure 1) and published their results in “National Science Review” (National Science Review, NSR). The BCL strategy uses tumors as manufacturing factories to generate a highly potential tumor-targeted drug Ru-rhein, which can selectively kill cancer cells and tumors in tumor-bearing mice, while no toxicity on normal cells. BCL strategy generates targeting drugs from non-toxic compounds within the tumor, not only avoiding the decomposition and inactivation of the drug during transportation and storage, but also reducing the serious side effects caused by interacting with biologically active molecules during treatment.

The copper content in tumor cells is much higher than that in normal cells. The targeting drug Ru-rhein is generated from two non-toxic compounds Ru-N3 and rhein-alkyn within tumor with a yield of more than 80%, by using the endogenous copper-catalyzed bioorthogonal reactions. However, the above-mentioned reactions hardly occur in normal tissues. Thus tumor targeting and selectivity of Ru-rhein is realized by BCL strategy. Ru-rhein exhibits high anti-cancer activity, especially towards lung cancer cell A549, almost as toxic as cisplatin, while it is non-toxic to normal lung cell HLF and might be used as a candidate drug for clinical development (Figure 2). Ru-rhein targets the mitochondria of tumor cells and causes autophagic cell death through the mitochondrial pathway.

A mouse model was used to validate the BCL strategy. Compared with the control group, tumor growth of the tumor-bearing mice injected with Ru-N3 and rhein-alkyn was significantly inhibited, and other organs were almost undamaged (Figure 3). The generality of the BCL strategy was demonstrated in the generation of osmium and iridium-based metallodrugs within tumor cells.

The BCL method provides a general strategy for precise diseases treatment, and also reveals that tumor can provide copper species that efficiently catalyze orthogonal reactions. This research was funded by the National Natural Science Foundation of China. Dr. Xuling Xue, a postdoctoral fellow at Nanjing Normal University, is the first author of the paper.

###

See the article:

Xuling Xue, Chenggen Qian, Qin Tao, Yuanxin Dai, Mengdi Lv, Jingwen Dong, Zhi Su, Yong Qian, Jing Zhao, Hongke Liu, Zijian Guo

Using bioorthogonally catalyzed lethality strategy to generate mitochondria-targeting antitumor metallodrugs in vitro and in vivo

Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa286
https://doi.org/10.1093/nsr/nwaa286

Media Contact
Hongke Liu
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa286

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa286

Tags: Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Gender assumptions harm progress on climate adaption and resilience

March 3, 2021
IMAGE

MDI Biological Laboratory receives funding to address arsenic threat

March 3, 2021

High end of climate sensitivity in new climate models seen as less plausible

March 3, 2021

Camera traps reveal newly discovered biodiversity relationship

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    663 shares
    Share 265 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMedicine/HealthBiologyMaterialsClimate ChangeCell BiologyGeneticscancerEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Gender assumptions harm progress on climate adaption and resilience
  • Researchers urge greater awareness of delayed skin reactions to Moderna COVID-19 vaccine
  • Mobile app helps young adults talk with friends about risky drug, alcohol use
  • MDI Biological Laboratory receives funding to address arsenic threat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In