• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home EXPLORE iGEM News

Bioengineers Develop an “Epigenetic Toolbox”

Bioengineer by Bioengineer
August 16, 2014
in News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It’s not surprising that this challenge from the International Genetically Engineered Machine (iGEM) competition garnered interest from engineering schools across the country. What was surprising was that the competition’s North America Grand Prize winners, Penn Engineering’s iGEM team, had no synthetic biology training when they entered the competition. “Prior to developing their project, the team had practically none of the design or molecular cloning experiences of other teams, and had little understanding of what synthetic biology is,” explains Brian Chow, assistant professor of Bioengineering and the team’s primary faculty advisor.

Bioengineers Develop an Epigenetic Toolbox

To obtain the necessary fundamentals, the team of five undergraduates, Daniel Cabrera, Mahamad Charawi, Danielle Fields, Brad Kaptur and Josh Tycko, went to “synthetic biology boot camp,” starting with an intensive one-week training session in molecular cloning at the Penn Genome Frontiers Institute. Under the mentorship of Spencer Glantz, Michael Magaraci, Jordan Miller and Avin Veerakumar, all of whom were responsible for initiating Penn’s participation in iGEM in 2011, the team quickly learned how to apply their individual engineering knowledge to molecular biology. “It helped all of us learn a vast skillset quickly which, for the iGEM competition, was crucial,” says Charawi, a computer science major. “It helped to bring us together.”

Collaboration and Determination Define a Winning Team

That collaborative foundation proved strategic when the team needed to agree on what aspect of synthetic biology to target. “We spent weeks brainstorming ideas and reading papers for inspiration,” says Fields, a bioengineering major. “It took us a while to find a project idea that was both interesting and doable. Ultimately, we chose a project in epigenetics with the target of methylation because all of us were excited about the idea, and we saw a lot of potential.”

Epigenetics reveals how chemical and structural modifications to an organism’s DNA alter heritable traits. Methylation of DNA is a signaling tool that is important in numerous cellular processes, including embryonic development, genomic imprinting, X-chromosome inactivation and preservation of chromosome stability. The team wanted to see if adding this chemical cap to specific sites on a genome could prevent certain genes from turning on. They originally planned on incorporating the use of BioBricks™, modular genetic assemblies that perform a specific function. Like LEGO® construction toys, BioBricks can be linked to create novel circuits for programming cells.

Shortly after receiving the iGEM-provided toolbox, the team ran into their first two roadblocks: there were no tools available to target DNA methylation, and there was no easy way to measure the process. “The most important thing that the mentors and I set out to do was to give the team ownership of the project, for better or worse, because that is what makes Penn iGEM unique compared to other undergrad research opportunities,” says Chow. “Because they had full ownership of the project, when they ran into these roadblocks they didn’t change course, but forged ahead.”

The team’s tenacity resulted in the prototype development of three tools: an engineered enzyme designed to methylate specific regions of a gene, an easy-to-use measurement assay to analyze whether or not targeted methylation has occurred, and a software package for analyzing the data.

Champions Two Years Running!

Like last year’s Penn Engineering iGEM team, which also took home the Grand Prize in the North America Region and recently published their findings in the peer-reviewed journal ACS Synthetic Biology, this year’s team aims to publish their project in a scientific journal and freely share their work with researchers. “One of the principal tenets of iGEM and synthetic biology is the ‘design-build-test’ cycle of biological systems. A very important goal of iGEM is to have teams contribute novel and well-characterized BioBricks for future teams to utilize,” says Chow, who as a student himself participated in the inaugural workshop that would later become the iGEM competition. “At that time, my project was not terribly successful. However, the modular ribosome-binding site BioBricks I created for the project have since been used in roughly 12,000 different iGEM designs over the past decade,” he says.

Perhaps the best outcome of the project, over and above winning, was that the students developed broader perspectives about research and epigenetics. “Students can often become so focused on winning competitions that they lose sight of the bigger scientific picture,” says Chow. “This experience helped them not only see that great science increases their probability of winning, but that their scientific innovation has the potential to make a lasting impact on society.”

Story Source:

The above story is based on materials provided by Penn Engineering.

Share14Tweet9Share3ShareShareShare2

Related Posts

No Content Available
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Local Residents Embrace the Expansion of Large-Scale Solar Projects in Their Backyards

Seamlessly Connect Nanoparticles Like Building Blocks for Industrial Applications!

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.