• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 3, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Bioengineering Study Finds that Bacteria Organize According to ‘Rich-Get-Richer’ Principle

Bioengineer by Bioengineer
May 20, 2013
in Bioengineering, Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacteria on a surface wander around and often organize into highly resilient communities known as biofilms. It turns out that they organize in a rich-get-richer pattern similar to many economies, according to a new study by researchers at UCLA, Northwestern University and the University of Washington.

Bacteria Organize According to 'Rich-Get-Richer' Principle

The study, published online May 8 in the journal Nature, is the first to identify the strategy by which bacteria form the micro-colonies that become biofilms, which can cause lethal infections. The research may have significant implications for battling stubborn bacterial infections that do not respond to antibiotics.

Bacteria in biofilms behave very differently from free-swimming bacteria. Within biofilms, bacteria change their gene expression patterns and are far more resistant to antibiotics and the body’s immune defenses than individual, free-swimming bacteria, because they mass together and are protected by a matrix of proteins, DNA and long, chain-like sugar molecules called polysaccharides. This makes seemingly routine infections potentially deadly.

Gerard Wong, professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science, member of the California NanoSystems Institute, and professor of chemistry and biochemistry at UCLA; Erik Luijten, professor of materials science and engineering and of applied mathematics at Northwestern University; and Matthew R. Parsek, professor of microbiology at the University of Washington, led a team of researchers who elucidated the early formation of biofilms by developing algorithms that describe the movements of the different strains of the bacterium Pseudomonas aeruginosa and by conducting computer simulations to map the bacteria’s movements. P. aeruginosa can cause lethal, difficult-to-treat infections, including those found in cystic fibrosis and AIDS patients.

Surprisingly, the researchers found that the individual bacteria that start the formation of micro-colonies have no special, inherent qualities. As bacteria move across a surface, they leave trails composed of a specific type of polysaccharide called Psl. “Some of the bacteria remained fixed in position,” Parsek said. “But some moved around on the surface, apparently randomly, but leaving a trail that influenced the surface behavior of other bacteria that encountered it.”

Bacteria arriving later also lay trails, but their movements tend to be guided by the trails from the pioneers. This network of trails creates a process of positive feedback and enables bacteria to organize into micro-colonies that mature into biofilms. By being at the right place at the right time, and by using communally produced polysaccharides, a small number of lucky cells — often ones that come later — become the first to form micro-colonies. Cells in micro-colonies have many survival advantages over other bacteria.

Interestingly, these biofilms develop in accordance with Zipf’s Law, which has been used to describe the phenomenon of a small portion of a population controlling the majority of that population’s wealth. “It turns out bacteria do something similar,” Wong said. “A small number of bacteria have the best access to the lion’s share of communally produced polysaccharides.”

Wong said the research may provide insight into how to fight antibiotic-resistant bacteria. “Typically, when we want to get rid of bacteria, we just kill them with antibiotics,” he said. “As a result, they develop defense mechanisms and grow stronger. Maybe that’s not always the best way to treat biofilms. Perhaps we can regulate bacterial communities the way we regulate economies. Our work suggests that new treatment options may use incentives and communications, as well as punishment, to control bacterial communities.”

Luijten said that the group’s findings were possible because the researchers drew knowledge from their various individual disciplines. “Only through combination of the totally different types of expertise of three different research groups has it been possible to disentangle what is going on, and how polysaccharides influence the organization of bacteria into micro-colonies.”

Story Source:

The above story is reprinted from materials provided by UCLA Newsroom.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Helping soft robots turn rigid on demand

March 3, 2021
IMAGE

uOttawa in studies investigating why COVID-19 devastation of long-term care residents

March 3, 2021

Researchers introduce a new generation of tiny, agile drones

March 3, 2021

Researchers receive $1.9 million to study possible dementia causes

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    661 shares
    Share 264 Tweet 165
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthTechnology/Engineering/Computer ScienceEcology/EnvironmentChemistry/Physics/Materials SciencesClimate ChangeMedicine/HealthInfectious/Emerging DiseasesGeneticsBiologyMaterialsCell Biologycancer

Recent Posts

  • Helping soft robots turn rigid on demand
  • uOttawa in studies investigating why COVID-19 devastation of long-term care residents
  • Researchers introduce a new generation of tiny, agile drones
  • Researchers receive $1.9 million to study possible dementia causes
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In