• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

BFU scientists learned how to manage the properties of amorphous microwires

Bioengineer by Bioengineer
March 1, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of physicists from Immanuel Kant Baltic Federal University and MISIS learned how to manage properties of amorphous microwires by adjusting internal mechanical stress

IMAGE

Credit: 10.1016/j.jmmm.2018.12.017

Amorphous ferromagnetic microwires are thin glass coated wires used to manufacture magnetic safety tags and in medicine. A team of physicists from Immanuel Kant Baltic Federal University and MISIS learned how to manage their properties by adjusting internal mechanical stress. The article was published in the Journal of Magnetism and Magnetic Materials.

Amorphous ferromagnetic microwires are ultra-thin glass coated wires. Their static and dynamic properties have recently become the focus of studies, because these materials are easy and cheap to produce, and their unique magnetic properties can be easily managed both in the course of manufacture and sample processing.

Currently microwires are widely used in magnetic safety tags, various detectors and in medicine for creating the state of hyperthermia.

Amorphous microwires are able to become magnetized. They also have domain structure that consists of different domains with opposite magnetization directions. The border between them is called a domain wall. There are two mechanisms used to remagnetize ferromagnetic objects – domain wall propagation and magnetization vector turning. Amorphous ferromagnetic microwires manufactured from Fe-rich alloys are remagnetized using the former method. Control over domain wall propagation is of interest from both scientific and practical points of view. Its dynamics can be regulated by choosing the composition of the alloy and the manufacture regime. The combination of these factors forms the distribution of internal mechanical stresses in a metal core which in turn determines the micromagnetic structure and the dynamics of domain wall propagation.

However, it is difficult to produce a microwire with specified mechanical properties. A team of scientists from Immanuel Kant Baltic Federal University analyzed the applying of stress in a metal core in the course of manufacture of microwires with similar diameters. To do so, they examined samples in different states: immediately after manufacture, after the removal of glass, and after additional annealing (heating a material up to certain temperature and keeping it at it for a required period of time followed by gradual cooling down to room temperature).

“We found out that residual stresses in the wires with identical composition are determined not only by their geometry, as we supposed. We went back to basics of the process and demonstrated the importance of the production technology choice. We also showed differences in the internal stresses of similar wires and their considerable influence at static and dynamic magnetic properties of the materials,” explained Valeria Rodionova, a co-author of the article, and the head of the laboratory of new magnetic materials at Baltic Federal University.

The study will improve the understanding of how the properties of amorphous ferromagnetic microwires and broaden the areas of their use (e.g. in applications that require domain wall propagation control, as well as in data recording and reading devices).

###

Media Contact
Julia Shkurkina
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jmmm.2018.12.017

Tags: Chemistry/Physics/Materials SciencesElectromagneticsMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carica papaya Extracts Combat Amoebic Liver Abscesses

Public Views on Microplastic Solutions and Costs

Serum Bile Acids Linked to Precocious Puberty Diagnosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.