• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, August 11, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Beyond 5G: Wireless communications may get a boost from ultra-short collimating metalens

Bioengineer by Bioengineer
July 7, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Takehito Suzuki/ TUAT

Screens may be larger on smartphones now, but nearly every other component is designed to be thinner, flatter and tinier than ever before. The engineering requires a shift from shapely, and bulky lenses to the development of miniaturized, two-dimensional metalenses. They might look better, but do they work better?

A team of Japan-based researchers says yes, thanks to a solution they published on July 7th in Applied Physics Express, a journal of the Japan Society of Applied Physics.

The researchers previously developed a low-reflection metasurface — an ultra-thin interface that can manipulate electromagnetic waves — specifically to control terahertz waves. These waves overlap millimeter waves and infrared waves, and, while they can transmit a significant amount of data, they easily attenuate in the atmosphere.

The technology may not be suitable for long-range wireless communications, but could improve short-range data exchanges, such as residential internet speeds, said paper author Takehito Suzuki, associate professor in the Institute of Engineering at Tokyo University of Agriculture and Technology. According to Suzuki, the researchers have taken a step toward such application developments by using their metasurface to craft the world’s “top” ultra-short metalens that collimates to align an optical system with a distance of only one millimeter. The metalens is capable of increasing transmitted power by three at the far field, where the signal strength typically weakens.

“Terahertz flat optics based on our originally developed low-reflection metasurface with a high-refractive index can offer attractive two-dimensional optical components for the manipulation of terahertz waves,” Suzuki said.

The challenge was whether the collimating lens, which converts approximately spherical-shaped terahertz waves to aligned terahertz waves, made with the metasurface, could be mounted closely to the electronics — called a resonant tunneling diode — that transmits terahertz waves at the right frequency and in the right direction. The minimal distance between the diode and the metalens is the necessary ingredient in current and future electronic devices, Suzuki said.

“We resolved this problem,” Suzuki said. “We integrated a fabricated collimating metalens made with our original metasurface with a resonant tunneling diode at a distance of one millimeter.” Measurements verify that the collimating metalens integrated with the resonant tunneling diode enhances the directivity to three times that of a single resonant tunneling diode.

The researchers tuned their device to 0.3 terahertz, a band at a higher frequency than the one used for 5G wireless communications. The manipulation of higher-frequency electromagnetic waves allows the upload and download of huge amounts of data in 6G wireless communications, according to Suzuki.

“The 0.3 terahertz band is a promising candidate for 6G offering advanced cyber-physical systems,” Suzuki said. “And our presented collimating metalens can be simply integrated with various terahertz continuous-wave sources to accelerate the growth of emerging terahertz industry such as 6G wireless communications.”

###

Suzuki is also affiliated with the Japan Science and Technology Agency. Other contributors include Kota Endo, Masashi Sekiya and Kento Sato, Department of Electrical and Electronics Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology; and Jaeyoung Kim, ROHM Co.

For more information about the Suzuki laboratory, please visit http://web.tuat.ac.jp/~suzuki-lab/index-e.html, http://web.tuat.ac.jp/~suzuki-lab/index.html

Original Paper:

Resonant tunneling diode integrated with metalens for high-directivity terahertz waves

Kota Endo, Masashi Sekiya, Jaeyoung Kim, Kento Sato, and Takehito Suzuki

Applied Physics Express 14, 072002 (2021)

https://doi.org/10.35848/1882-0786/ac0678

Funding:

This research is supported by Grant-in-Aid for Scientific Research (C) (No. 18K04970) from the Japan Society for the Promotion of Science (JSPS), PRESTO from the Japan Science and Technology Agency (JST) (JPMJPR18I5), Inamori Foundation, Kato Foundation for Promotion of Science, Iketani Science and Technology Foundation, TEPCO Memorial Foundation, GMO Internet Foundation, and The Noguchi Institute.’

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Takehito Suzuki, Ph.D.

Associate Professor,

Institute of Engineering,

Tokyo University of Agriculture and Technology, Japan

E-mail : [email protected]

Media Contact
Yutaka Nibu, Ph.D.
[email protected]

Related Journal Article

http://dx.doi.org/10.35848/1882-0786/ac0678

Tags: Electrical Engineering/ElectronicsElectromagneticsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Dust aerosol concentration (contours with interval of 20000 kg/m2) caused by the Mongolian cyclone and its corresponding standardized value of the Himawari-8 red channel (shading; red coloring denotes dust)

The formation of a super strong Mongolian cyclone and its contributing factors

August 11, 2022
A PeVatron revealed in gamma rays

NASA’s Fermi confirms star wreck as source of extreme cosmic particles

August 11, 2022

HKUMed & CityU researchers jointly discover non-invasive stimulation of the eye for depression and dementia

August 11, 2022

First stars and black holes

August 11, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVirologyVaccineZoology/Veterinary ScienceVehiclesUrbanizationVirusVaccinesUniversity of WashingtonWeather/StormsUrogenital SystemViolence/Criminals

Recent Posts

  • Middle East experts blaze new trail to speak at the 17th International Conference on Genomics in Reproductive Health | BGI Update
  • Bioengineered cornea can restore sight to the blind and visually impaired
  • Meteorite provides record of asteroids “spitting out” pebbles
  • The formation of a super strong Mongolian cyclone and its contributing factors
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In