• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Better bundled: new principle for generating X-rays

Bioengineer by Bioengineer
January 25, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists from Göttingen University develop method in which beams are simultaneously generated and guided by ‘sandwich structure’

IMAGE

Credit: Julius Hilbig

X-rays are usually difficult to direct and guide. X-ray physicists at the University of Göttingen have developed a new method with which the X-rays can be emitted more precisely in one direction. To do this, the scientists use a structure of thin layers of materials with different densities of electrons to simultaneously deflect and focus the generated beams. The results of the study were published in the journal Science Advances.

To generate X-rays in ordinary X-ray tubes, electrons that have been accelerated by a high voltage, collide with a metal anode. The atoms in the metal deflect and slow down the electrons on their path, or the electrons excite the metal atoms to emit radiation as they bump into each other. Both the deceleration of the electrons and the excitation of the metal atoms result in X-ray radiation being emitted. Unfortunately, the radiation is emitted equally in all directions and is then difficult to direct into a focused beam. In addition, the wavefront of the emitted X-rays is completely random and disordered.

Physicists at the Institute for X-ray Physics at Göttingen University have now observed a novel effect when the anode is replaced by a suitable structure of thin layers of materials with different densities of electrons. The thickness of the “sandwich structure” must be a few millionths of a millimetre. If a particular sequence of layers is chosen, the X-rays can be guided. “When the accelerated electrons hit this sandwich structure, the angular spectrum of the generated X-rays changes,” says Malte Vassholz, first author of the paper. He goes on to say, “The X-rays are preferentially generated and directed parallel to the layers, which act as a waveguide, similar to an optical fibre.”

Detailed numerical calculations allow the results to be reproduced in a model and calculated for a given choice of structure. “According to our calculations, the effect could be further enhanced by optimising the structure. This would enable us to generate X-ray radiation with higher brilliance,” adds Professor Tim Salditt. The hope is that X-ray measurements, which have so far only been possible at large accelerators such as the electron synchrotron in Hamburg, can also be brought ‘into the laboratory’ to some extent. “Applications of X-ray imaging for microscopically small and low-contrast objects – such as soft biological tissues – are particularly interesting,” says Salditt.

###

Original publication: Malte Vassholz, Tim Salditt. Observation of electron-induced characteristic x-ray and bremsstrahlung radiation from a waveguide cavity. Science Advances (2021). Doi 10.1126/sciadv.abd5677

https://advances.sciencemag.org/content/7/4/eabd5677

Contact:

Professor Tim Salditt

University of Göttingen

Institute for X-ray Physics

Friedrich-Hund-Platz 1, 37077 Göttingen

Tel: +49 (0)551 39 29918 / Secretary: +49 (0) 551 39 25556

Email: [email protected]

http://www.roentgen.physik.uni-goettingen.de

Media Contact
Melissa Sollich
[email protected]

Original Source

https://www.uni-goettingen.de/en/3240.html?id=6146

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abd5677

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Cell Viability: Flow Cytometry vs. Microscopy

Study: COVID-19 Boosters Effective in Immunosuppressed Kids

Mediatizing Egypt’s New Administrative Capital Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.