• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Barrow researcher discovers critical RNA processing aberrations

Bioengineer by Bioengineer
April 19, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research by a Barrow Neurological Center scientist on mechanisms of dysfunctional RNA processing in ALS and frontaltemporal dementia (FTD) was published in the April issue of Acta Neuropathologica. The research was conducted by Dr. Rita Sattler and her graduate student Stephen Moore in her laboratory at the Department of Neurobiology at Barrow Neurological Institute, which is dedicated to understanding the mechanisms of disease in ALS, FTD and related neurodegenerative diseases.

The featured research discovers that a specific RNA processing protein, known as ADAR2, undergoes cellular mislocalization and is found in an unexpected region in neurons from postmortem ALS/FTD patient brain tissue. This altered cellular localization leads to dysfunctional RNA alterations, which impact critical disease pathways involved in neurodegeneration in the most common subgroup of ALS/FTD patients, those characterized by a mutation in the C9orf72 gene. These dysfunctions are likely to contribute to neuronal loss in other neurodegenerative diseases and could potentially be rescued by therapeutic intervention with compounds that prevent the cellular mislocalization of ADAR2.

“These findings emphasize the importance of RNA processing in ALS and FTD disease and suggest that therapeutics targeting the mislocalization of these RNA binding proteins might be beneficial for patients with neurodegenerative diseases,” says Dr. Rita Sattler, Associate Professor of Neurobiology and Neurology at Barrow.

The research was conducted at Barrow, which is part of Dignity Health St. Joseph’s Hospital and Medical Center, in close collaboration with TGen and other institutions across the country. Dr. Sattler and her team came to their results by examining the cellular localization of ADAR2 in varying models of disease followed by a transcriptome analysis of tissues and iPSCs using RNA sequencing technology. The data was analyzed for changes in RNA processing and compared to data obtained from healthy control volunteers.

The research was funded by the Barrow Neurological Foundation, the National Institute of Health, the ALS Association, the Muscular Dystrophy Association and the Robert Packard Center of ALS Research at Johns Hopkins University.

The eventual goal for this research is to test novel compounds that will prevent ADAR2 from changing its cellular localization, and thereby prevent the aberrations of RNA editing and improve neuronal health.

Future research is aimed at closely examining individual genes of the cellular pathways affected by the mislocalization of ADAR2 and the aberrant RNA editing. This could lead to the discovery of more specific novel therapeutic targets for patients with neurodegenerative diseases.

###

Media Contact
Carmelle Malkovich
[email protected]

Tags: AlzheimerBiologyCell BiologyGeneticsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Comparative Study of Two Innovative Single-Cell RNA Platforms

Comparative Study of Two Innovative Single-Cell RNA Platforms

December 1, 2025
blank

Exploring Denmark’s Tardigrade Fauna through Citizen Science

December 1, 2025

Unveiling Eryngium thyrsoideum: Insights into Its Benefits

December 1, 2025

MicroRNA Impact on Eucalyptus tereticornis Wood Traits

December 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gene Redundancy Unlocks Pathogen Evolution and Infection

Advancing CAR T Cell Therapy for CNS Tumors

Evaluating Intangible Cultural Heritage Through Multimodal Machine Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.