• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Barcoding long DNA quantifies CRISPR effects

Bioengineer by Bioengineer
August 26, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST Jinna Xu.

Current sequencing techniques lack the sensitivity to detect rare gene mutations in a pool of cells, which is particularly important, for example, in early cancer detection. Now, scientists at KAUST have developed an approach, called targeted individual DNA molecule sequencing (IDMseq), that can accurately detect a single mutation in a pool of 10,000 cells.

Importantly, the team successfully used IDMseq to determine the number and frequency of mutations caused by the gene editing tool, CRISPR/Cas9, in human embryonic stem cells. Clinical trials are underway to test CRISPR’s safety to treat some genetic diseases. “Our study revealed potential risks associated with CRISPR/Cas9 editing and provides tools to better study genome editing outcomes,” says KAUST bioscientist Mo Li, who led the study.

IDMseq is a sequencing technique that involves attaching a unique barcode to every DNA molecule in a sample of cells and then making a large number of copies of each molecule using a polymerase chain reaction (PCR). Copied molecules carry the same barcode as the original ones.

A bioinformatics tool kit, called variant analysis with unique molecular identifier for long-read technology (VAULT), then decodes the barcodes and places similar molecules into their own “bins”, with every bin representing one of the original DNA molecules. VAULT uses a combination of algorithms to detect mutations in the bins. The process works especially well with third-generation long-read sequencing technologies and helps scientists detect and determine the frequency of all types of mutations, from changes in single DNA letters to large deletions and insertions in the original DNA molecules.

The approach successfully detected a deliberately caused gene mutation that was mixed with a group of wild-type cells at ratios of 1:100, 1:1,000 and 1:10,000. It also correctly reported its frequency.

The researchers also used IDMseq to look for mutations caused by CRISPR/Cas9 genome editing. “Several recent studies have reported that Cas9 introduces unexpected, large DNA deletions around the edited genes, leading to safety concerns. These deletions are difficult to detect and quantitate using current DNA sequencing strategies. But our approach, in combination with various sequencing platforms, can analyze these large DNA mutations with high accuracy and sensitivity,” says Ph.D. student Chongwei Bi.

The tests found that large deletions accounted for 2.8-5.4 percent of Cas9 editing outcomes. They also discovered a three-fold rise in single-base DNA variants in the edited region. “This shows that there is a lot that we need to learn about CRISPR/Cas9 before it can be safely used in the clinic,” says Yanyi Huang of Peking University, who is an international collaborator co-funded by KAUST.

IDMseq can currently sequence only one DNA strand, but work to enable double-strand sequencing could further improve performance, say the researchers.

###

Media Contact
Carolyn Unck
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1027/barcoding-long-dna-quantifies-crispr-effects

Related Journal Article

http://dx.doi.org/10.1186/s13059-020-02143-8

Tags: BiologyBiotechnologyCell BiologyGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Blocking Prolyl Endopeptidase Boosts Bone Regeneration

December 29, 2025
blank

Exploring Deep Learning’s Impact on Software Testing

December 29, 2025

Nanoparticle Camouflage for Treating Incurable Diseases

December 29, 2025

Fe3O4-Loaded N-Doped Carbon Spheres Elevate Battery Anodes

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blocking Prolyl Endopeptidase Boosts Bone Regeneration

Exploring Deep Learning’s Impact on Software Testing

Nanoparticle Camouflage for Treating Incurable Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.