• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacterial chemical ‘signatures’ a sign of damaged gut microbiome in critical illness

Bioengineer by Bioengineer
June 13, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemicals produced by healthy bacteria could be used to assess the health of the gut microbiome and help identify critically-ill children at greatest risk of organ failure, a study published in Critical Care Medicine has found.

The gut microbiome is a trillions-strong community of healthy bacteria that live inside us. They make important contributions to our health, including fermenting the food we eat, making vitamins and regulating our appetite. In critical illness, patients often receive lots of antibiotics, and this may inadvertently damage many healthy gut bacteria.

Children have a less developed microbiome so may be at particular risk following strong antibiotic therapy. If the antibiotics damage healthy gut bacteria, this can result in the loss of important functions of the microbiome and an increase in potentially disease-causing and antibiotic-resistant bugs; in turn, these can cause complications including organ failure.

In this new study, researchers looked at how critical illness affects the functions of the gut microbiome. Researchers examined genetic profiles of gut bacteria and measured levels of chemicals these bacteria produce in 60 critically ill and 55 healthy children. They looked at gut bacterial populations by sequencing the DNA in faecal samples. They then undertook chemical analysis of urine and faecal samples from children participating in the study.

The researchers found that in seriously ill children, the numbers of ‘good’ bacteria were reduced compared to healthy children. Alongside this, chemicals normally produced by the healthy gut microbiome were dramatically reduced. Levels of some of these chemicals were associated with how sick the children were.

In urine, three bacterial chemicals (called hippurate, formate and 4-cresol sulphate) were dramatically depleted in samples from critically ill patients.

In faeces, the researchers found patients had lost a group of chemicals called short chain fatty acids. These chemicals, normally produced by healthy gut bacteria, have a number of beneficial activities for the body. These include maintaining a healthy gut lining, regulating appetite and supporting the immune system.

The lead investigator, Dr Nazima Pathan, from the Department of Paediatrics at the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, said: “Trillions of healthy bacteria live in our guts, keeping it healthy as well as supporting our digestion and metabolism. Serious illness may strike a severe blow to the ability of these bacteria to survive and continue their beneficial activities.

“Chemicals produced by healthy gut bacteria are effectively a signature of the presence of a healthy, functioning microbiome. Measuring their levels could offer doctors a way of identifying who needs treatment to restore a healthy microbiome, and for how long.”

The researchers say that biochemical measures could complement the assessment of gut microbiome composition and offer an insight into the microbiome’s functional capacity. The researchers are working on a rapid assay to help monitor gut health by measuring these chemicals as an indicator of gut health. It could help identify patients who need probiotics to restore the numbers of healthy bacteria in the gut.

###

The study was carried out by the University of Cambridge, The University of Reading, The Wellcome Trust Sanger Institute, Imperial College London, University College London, The Murdoch University and Great Ormond Street Hospital.

The work was funded by the Evelyn Trust, the NIHR Imperial Biomedical Research Centre’s Institute of Translational Medicine and Therapeutics and Gut Health theme, Wellcome, Great Ormond Street Hospital Children’s Charity and the European Society of Intensive Care Medicine.

Reference

Wijeyesekera, AD et al. Multi-compartment profiling of bacterial and host metabolites identifies intestinal dysbiosis and its functional consequences in the critically ill child. Critical Care Medicine; E-pub 4 June 2019; DOI: 10.1097/CCM.0000000000003841

Media Contact
Craig Brierley
[email protected]
http://dx.doi.org/10.1097/CCM.0000000000003841

Tags: BacteriologyBiologyCritical Care/Emergency MedicineInternal MedicineMedicine/HealthMicrobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

ProteinFormer: Transforming Protein Localization with Bioimages

ProteinFormer: Transforming Protein Localization with Bioimages

November 9, 2025
blank

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025

MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

November 9, 2025

First Hybrid Eriocheir Discovery in Mediterranean Sea

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ProteinFormer: Transforming Protein Localization with Bioimages

PD-1 Inhibitors Enhance Outcomes After CD19 CAR-T

Building Inclusive Retirement Home Policies: A Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.