• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Atmospheric turbulence affects new particle formation: Common finding on three continents

Bioengineer by Bioengineer
July 7, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

New particle formation (NPF) is a key process for haze formation, leading to the deterioration of air quality. Chemical and photochemical processes have been intensively studied over the past decades to understand their roles in NPF, but the physical process has drawn much less attention.

Observational Evidence

A ubiquitous relationship is found between the intensity of atmospheric stability in the surface layer and NPF features, based on a large number of observations made at three sites in three countries (China, Finland, and the USA). Numerous factors impacting NPF are identified and quantified in our observational analyses. Besides facilitating NPF, increasing the turbulence intensity depresses the condensation sink of NPF, preventing small particles from being scavenged on the surface of preexisting particles. The growth rate is faster under strengthening turbulence conditions (> 3.2 nm h-1) than under weakening turbulence conditions (

Proposed Mechanism

In general, enhanced turbulence generates a higher local supersaturation that facilitates the clustering of condensable vapor to form new particles, favoring the nucleation process. Enhanced turbulence also dilutes the pre-existing particle concentration, causing the condensation sink to decrease. This favors the growth of newly formed particles, which also prolongs the duration of NPF events. These findings suggest a physical mechanism that may act on top of the traditional mechanisms of NPF that are solely based on chemical and photochemical processes. This may help elucidate the NPF process from a physical perspective, leading to improvements in predicting the occurrence and duration of haze events.
Model Simulations

The hypothesis of the new physical mechanism is tested using a molecular dynamics model. Model results suggest that molecule clusters are compressed and overcome the kinetic energy barrier to form a particle. Due to turbulent diffusion, strong coherent structures of dilution effectively segregate preexisting particles, which also exerts an influence on the particle size distribution, thus favoring the growth of nucleated particles.

###

See the article:

Hao Wu, Zhanqing Li, Hanqing Li, Kun Luo, Yuying Wang, Peng Yan, Fei Hu, Fang Zhang, Yele Sun, Dongjie Shang, Chunsheng Liang, Dongmei Zhang, Jing Wei, Tong Wu, Xiaoai Jin, Xinxin Fan, Maureen Cribb, Marc L Fischer, Markku Kulmala, Tuukka Petäjä. The impact of the atmospheric turbulence development tendency on new particle formation: a common finding on three continents. National Science Review, https://doi.org/10.1093/nsr/nwaa157

Media Contact
Zhanqing Li
[email protected]

Original Source

https://doi.org/10.1093/nsr/nwaa157

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa157

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangeClimate ScienceEnvironmental HealthPollution/Remediation
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Biodistribution of AAV gene transfer vectors in nonhuman primate

January 15, 2021
IMAGE

Basis for the essential cellular powerhouses

January 15, 2021

Divergences between scientific and Indigenous and Local Knowledge can be helpful

January 15, 2021

Eating omega-3 fat helps hibernating Arctic ground squirrels warm up during deep cold

January 14, 2021
Next Post
IMAGE

Childhood obesity linked to poor heart health signs at 11-12 years

IMAGE

Quantum classifiers with tailored quantum kernel?

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In