• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Astronomers find star material could be building block of life

Bioengineer by Bioengineer
January 23, 2019
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin


An organic molecule detected in the material from which a star forms could shed light on how life emerged on Earth, according to new research led by Queen Mary University of London.

The researchers report the first ever detection of glycolonitrile (HOCH2CN), a pre-biotic molecule which existed before the emergence of life, in a solar-type protostar known as IRAS16293-2422 B.

This warm and dense region contains young stars at the earliest stage of their evolution surrounded by a cocoon of dust and gas – similar conditions to those when our Solar System formed.

Detecting pre-biotic molecules in solar-type protostars enhances our understanding of how the solar system formed as it indicates that planets created around the star could begin their existence with a supply of the chemical ingredients needed to make some form of life.

This finding, published in the journal Monthly Notices of the Royal Astronomical Society: Letters, is a significant step forward for pre-biotic astrochemistry since glycolonitrile is recognised as a key precursor towards the formation of adenine, one of the nucleobases that form both DNA and RNA in living organisms.

IRAS16293-2422 B is a well-studied protostar in the constellation of Ophiuchus, in a region of star formation known as rho Ophiuchi, about 450 light-years from Earth.

The research was also carried out with the Centro de Astrobiología in Spain, INAF-Osservatorio Astrofisico di Arcetri in Italy, the European Southern Observatory, and the Harvard-Smithsonian Center for Astrophysics in the USA.

Lead author Shaoshan Zeng, from Queen Mary University of London, said: “We have shown that this important pre-biotic molecule can be formed in the material from which stars and planets emerge, taking us a step closer to identifying the processes that may have led to the origin of life on Earth.”

The researchers used data from the Atacama Large Millimeter/submillimetre Array (ALMA) telescope in Chile to uncover evidence for the presence of glycolonitrile in the material from which the star is forming – known as the interstellar medium.

With the ALMA data, they were able to identify the chemical signatures of glycolonitrile and determine the conditions in which the molecule was found. They also followed this up by using chemical modelling to reproduce the observed data which allowed them to investigate the chemical processes that could help to understand the origin of this molecule.

This follows the earlier detection of methyl isocyanate in the same object by researchers from Queen Mary. Methyl isocyanate is what is known as an isomer of glycolonitrile – it is made up of the same atoms but in a slightly different arrangement, meaning it has different chemical properties.

###

The research was partially funded by Queen Mary University of London and the UK Science and Technology Facilities Council.

  • Research paper: ‘First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium’. S. Zeng, D. Quénard, I. Jiménez-Serra, J. Martín-Pintado, V. M. Rivilla, L. Testi and R. Martín-Doménech. MNRAS Letters.
  • The research makes use of data from ALMA, a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), National Science Foundation (NSF), USA and National Institutes of Natural Sciences (Japan), together with the National Research Council (NRC) (Canada), the Ministry of Science and Technology (NSC) and Taiwan-American Occultation Survey (ASIAA, Taiwan), and the Korea Astronomy and Space Science Institute (KASI), in co-operation with the Republic of Chile.
  • The UK’s access to ALMA is maintained thanks to the Science and Technology Facilities Council (STFC)’s subscription to ESO.

Media Contact
Rupert Marquand
[email protected]
44-020-788-23004

Related Journal Article

http://dx.doi.org/10.1093/mnrasl/slz002

Tags: AstronomyAstrophysicsEvolutionSpace/Planetary ScienceStars/The Sun
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

The circadian clock makes sure plant cells have the time of their lives

August 12, 2022
Smart Contact Lenses for Cancer Diagnostics and Screening

Smart contact lenses for cancer diagnostics and screening

August 11, 2022

Social media helps scientists monitor rarely sighted whales

August 11, 2022

Simplified voice box enriches human speech

August 11, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyWeaponryVaccineWeather/StormsUrbanizationVaccinesUrogenital SystemViolence/CriminalsVehiclesUniversity of WashingtonVirusZoology/Veterinary Science

Recent Posts

  • A fresh look into grasslands as carbon sink
  • Researchers fabricate cobalt copper catalysts for methane on metal-organic framework Contributes to goal of methane production from carbon dioxide emissions
  • Virginia Tech veterinary college gets funding for research into parasite found in cats
  • China claims new world record for strongest steady magnetic field
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In