• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Astonishing quantum experiment in Science raises questions

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum systems are considered extremely fragile. Even the smallest interactions with the environment can result in the loss of sensitive quantum effects. In the renowned journal Science, however, researchers from TU Delft, RWTH Aachen University and Forschungszentrum Jülich now present an experiment in which a quantum system consisting of two coupled atoms behaves surprisingly stable under electron bombardment. The experiment provide an indication that special quantum states might be realised in a quantum computer more easily than previously thought.

The so-called decoherence is one of the greatest enemies of the quantum physicist. Experts understand by this the decay of quantum states. This inevitably occurs when the system interacts with its environment. In the macroscopic world, this exchange is unavoidable, which is why quantum effects rarely occur in daily life. The quantum systems used in research, such as individual atoms, electrons or photons, are better shielded, but are fundamentally similarly sensitive.

“Systems subject to quantum physics, unlike classical objects, are not sharply defined in all their properties. Instead, they can occupy several states at once. This is called superposition,” Markus Ternes explains. “A famous example is Schrödinger’s thought experiment with the cat, which is temporarily dead and alive at the same time. However, the superposition breaks down as soon as the system is disturbed or measured. What is left then is only a single state, which is the measured value,” says the quantum physicist from Forschungszentrum Jülich and RWTH Aachen University.

Given this context, the experiment that researchers at TU Delft have now carried out seems all the more astonishing. Using a new method, they succeeded for the first time in real-time observing how two coupled atoms freely exchange quantum information, switching back and forth between different states in a flip-flop interaction.

“Each atom carries a small magnetic moment called spin. These spins influence each other, like compass needles do when you bring them close. If you give one of them a push, they will start moving together in a very specific way,” explains Sander Otte, head of the Delft team that performed the experiment.

On a large scale, this kind of information exchange between atoms can lead to fascinating phenomena. Various forms of quantum technologies are based on these. A classical example is superconductivity: the effect where some materials lose all electrical resistivity below a critical temperature.

Unconventional approach

To observe this interaction between atoms, Otte and his team chose a rather direct way: Using a scanning tunnelling microscope, they placed two titanium atoms next to each other at a distance of just over one nanometre – one millionth of a millimetre. At that distance, the atoms are just able to feel each other’s spin. If you would now twist one of the two spins, the conversation will start by itself.

Usually, this twist is performed by sending very precise radio signals to the atoms. This so-called spin resonance technique – which is quite reminiscent of the working principle of an MRI scanner found in hospitals – is used successfully in research on quantum bits. Among other things, quantum bits in certain types of quantum computers are programmed in such a way. However, the method has a disadvantage. “It is simply too slow,” says PhD student Lukas Veldman, lead author on the Science publication. “You have barely started twisting the one spin before the other starts to rotate along. This way you can never investigate what happens upon placing the two spins in opposite directions.”

So the researchers tried something unorthodox: they rapidly inverted the spin of one of the two atoms with a sudden burst of electric current. To their surprise, this drastic approach resulted in a beautiful quantum interaction, exactly by the book. During the pulse, electrons collide with the atom, causing its spin to rotate. Otte: “But we always assumed that during this process, the delicate quantum information – the so-called coherence – was lost. After all, the electrons that you send are incoherent: the history of each electron prior to the collision is slightly different and this chaos is transferred to the atom’s spin, destroying any coherence.”

“The crux is that it depends on the perspective,” argues Markus Ternes, co-author of the Science paper. “The electron inverts the spin of one atom causing it to point, say, to the left. You could view this as a measurement, erasing all quantum memory. But from the point of view of the combined system comprising both atoms, the resulting situation is not so mundane at all. For the two atoms together, the new state constitutes a perfect superposition, enabling the exchange of information between them. Crucially for this to happen is that both spins become entangled: a particular quantum state in which they share more information about each other than classically possible.”

The discovery could have far-reaching consequences for the development of quantum computers, whose function is based on the entanglement and superposition of quantum states. If one follows the findings, one could get away with being slightly less careful when initializing quantum states than previously thought. For Otte and his team at TU Delft, however, the result is above all the starting point of further exciting experiments. Veldman: “Here we used two atoms, but what happens if you use three? Or ten, or a thousand? Nobody can predict that, because the computing power [for simulating such] numbers is not sufficient.”

###

Media Contact
Tobias Schloesser
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.abg8223

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why AI Models for Drug Design Struggle with Physics

October 29, 2025
blank

Pioneering the Era of Supramolecular Robotics: Molecules in Motion

October 29, 2025

Discovering New Insights into How Physical Forces Travel Through Neurons

October 29, 2025

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting Carbon Footprint in Long-Haul E-Trucks

Transforming CO: How Industrial Microbes Turn Carbon Monoxide into Sustainable Biofuel

American Pediatric Society Honors Bruce D. Gelb, MD with 2026 APS John Howland Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.