• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Assassin cells armed with anticancer drugs kill cancer masses

Bioengineer by Bioengineer
May 13, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Won Jong Kim (POSTECH)

There are immune cells in our bodies that directly destroy infected or cancer cells – they are called natural killer cells. Recently, a POSTECH research team has developed an integrative cancer therapy using adoptive natural killer cell therapy and chemotherapy.

A research team led by Professor Won Jong Kim of POSTECH’s Department of Chemistry developed a treatment for solid cancers using the formation of natural killer-tumor cell immunological synapse through a joint research with GI Cell. The research findings were published as a front cover for the latest online edition of Advanced Materials, a leading academic journal in the field of material science.

To date, three methods including surgery, radiation therapy, and chemotherapy are implemented to treat cancer. While surgery and radiation therapy are helpful in reducing the size of tumors in treating solid cancer, there is a high risk of recurrence due to residual or metastatic cells. The residual cells and metastatic cells are treated by administering chemotherapy to patients, but their use is limited due to serious side effects in all parts of the body.

However, there is an immune system in the human body that can distinguish cancer cells from normal cells and selectively induce their death, and using this mechanism in anticancer immunotherapy not only has fewer side effects but also a higher survival rate for patients compared to chemotherapy.

In particular, treatments using natural killer cells during chemotherapy have low side effects and are more effective in treating leukemia. However, unlike leukemia cells where individual cells float in blood, in solid cancers, the extracellular layer surrounding the cancer tissues reduces the penetration rate of the natural killer cells, thus lowering their efficacy. Studies are being conducted to overcome this issue.

The research team hypothesized that the acidity would decrease rapidly near the immunological synapses based on the fact that the natural killer cells form immunological synapses and secrete low acidic granules at the boundary of natural killer-tumor cells in order to induce the death of cancer cells.

Based on this hypothesis, if the surface of natural killer cells is equipped with polymeric micelles*1, which can respond to low acidity and release anticancer drugs, it may provide a pragmatic platform that allows natural killer cells to selectively release anticancer drugs in tumor cells.

It was also anticipated that cancer drugs could induce the death of cancer cells in the deep parts of the tumor as their size is small enough to penetrate the dense extracellular layer around the tumor tissues. In the treatment of solid cancer, the team fused the adoptive natural killer cell therapy and chemotherapy to overcome the low therapeutic effects and high side effects. They implemented a system that can release anticancer drugs only when natural killer cells recognize the cancer cells and induce their death.

In addition, video footages filmed using a confocal scanning fluorescence microscope confirmed that acidity was reduced in the immunological synapses formed between natural killer and cancer cells and that the ReNK*2 system selectively released anticancer drugs.

It also confirmed that the delivery efficiency to cancer tissues increased significantly when anticancer drugs were delivered using ReNK in animal models with solid cancer.

Professor Won Jong Kim, who led the study as a corresponding author, stated, “This study is significant in that it has developed a strategy to enhance the effectiveness of cell therapy using natural killer cells in treating solid cancers.” He added, “This method can be applied to any cell with a simple process, so we expect to apply it to treatments currently on the market or in clinical trials.”

###

The research was supported by the Creative Materials Discovery Program, Mid-career Researcher Program, and Bio & Medical Technology Development Program of the National Research Foundation of the Ministry of Science and ICT, and by the industry-academia research project of GI Cell. The patents related to the research were transferred to GI Cell.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/assassin-cells-armed-with-anticancer-drugs-kill-cancer-masses/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1002/adma.202000020

Tags: BiochemistryBiologyBiomechanics/BiophysicscancerCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Genomic Test Forecasts Hormone Therapy Benefits in Recurrent Prostate Cancer Treatment

Insights into Day Program Treatment for Anorexia Caregivers

Key Insights on End-of-Life Communication in Nursing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.